Course Content for AI Lab | Prerequisites: Python programming Calculus Linear algebra Statistics | Learning Outcomes: Supervised learning algorithms Key concepts like under- and over-fitting, regularization, and cross-validation How to identify the type of problem to be solved, choose the right algorithm, tune parameters, and validate a model Unsupervised learning | Lab Exercises: Supervised Learning and K Nearest Neighbors Train Test Splits, Cross Validation, and Linear Regression Regularization and Gradient Descent Logistic Regression and Classification Error Metrics Clustering Methods | |--|---|---| | Deep Learning o | n Modern Intel Architecture (Duration: A | Approx18 hrs) | | Prerequisites: Python programming Calculus Linear algebra Statistics Machine Learning Course | Learning Outcomes: Techniques, terminology, and mathematics of DL Fundamental neural network architectures, feedforward networks, convolutional networks, and recurrent networks How to appropriately build and train models Various deep learning applications How to use pre-trained models for best results | Lab Exercises: Handwritten Image Detection with Keras using MNIST data Building a CNN to classify images in the CIFAR-10 Dataset Transfer Learning using MNIST data Using Pre-Trained Models Classifying CIFAR-10 with Data Augmentation Hands on E2E workflow using an image classification problem. | | Deploy on Mode
Edge) (Duration: | | OpenVino Toolkit (on Intel® DevCloud for | | Prerequisites: | Learning Outcomes: | Lab Exercises: | | Prerequisites: | Learning Outcomes: | Lab Exercises: | |---|--|--| | Python
programming Machine Learning
Course | Learn about Intel® Distribution of OpenVino toolkit for DL inference Model Optimizer and Inference Engine Accelerators based on Intel® Movidius™ Vision | Object Detection, Classification, Style Transfer Accelerated Object Detection Real-world use cases reference implementations – 1 from Healthcare, 1 from Industrial, 1 from Retail | | Deep Learning Course | Processing Unit Accelerators based on Intel® Movidius® Vision Processing Unit Accelerators based on Intel® Arria® FPGA Using Multiple Models in One Application DL Workbench DL Streamer (Optional) | from Healthcare, I from Industrial, I from Retail |