
                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  1 

OBJECT ORIENTED SOFTWARE 

ENGINEERING LAB 

 

 

ETCS 354 

 

 

 

 

 

 

 

 

 

Maharaja Agrasen Institute of Technology, 

 PSP area, Sector – 22, Rohini, New Delhi – 110085 

( Affiliated to Guru Gobind Singh Indraprastha 

University, Dwarka, New Delhi ) 

 

 

 

 

 
 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  2 

 

 

 

 

INDEX OF THE CONTENTS  

 

 Introduction to the lab. 

  (Details of H/w & S/w to be used in the lab) 

 List of Programs (as per the syllabus prescribed by 

G.G.S.I.P.U.) 

 Format of the lab record to be prepared by the students. 

 Steps to be followed ( for each practical ) 

 Sample Diagram/s 

  List/Details of the additional things. ( extra programs, projects 

etc. ) 

 Marking scheme  

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  3 

 

 

INTRODUCTION TO THE LAB  

 

 

Requirement of the lab  

 

 

Hardware Requirements: 

 
Pentium 4 processor (2.4 GHz), 128 Mb RAM, Standard keyboard and mouse,  coloured 

monitor. 

 

 

Software Requirements: 
 

Rational Rose Enterprise Edition, Windows XP/2000, MS OFFICE 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  4 

 

This lab deals with the analysis and design of a software problem .the tool used in a lab is 

Rational  Rose Enterprise Edtion .This tool is used  for a object oriented design of a 

problem . We draw a uml diagram in a rational rose which deals with the objects and 

classes in a system .The Unified Modeling Language or UML is is a mostly graphical 

modelling language that is used to express designs.  It is a standardized language in 

which to specify the artifacts and components of a software system.  It is important to 

understand that the UML describes a notation and not a process.  It does not put forth a 

single method or process of design, but rather is a standardized tool that can be used in a 

design process. 

The Unified Modeling Language (UML) is a standard  language for specifying, 

visualizing, constructing, and documenting the artifacts of software systems, as well as 

for business modeling and other non-software systems. The UML represents a collection 

of best engineering practices that have proven successful in the modeling of large and 

complex systems.
1
  The UML is a very important part of developing object oriented 

software and the software development process.  The UML uses mostly graphical 

notations to express the design of software projects.  Using the UML helps project teams 

communicate, explore potential designs, and validate the architectural design of the 

software. 

Goals of UML 

The primary goals in the design of the UML were: 

1. Provide users with a ready-to-use, expressive visual modeling language so they 

can develop and exchange meaningful models.  

2. Provide extensibility and specialization mechanisms to extend the core concepts.  

3. Be independent of particular programming languages and development processes.  

4. Provide a formal basis for understanding the modeling language.  

5. Encourage the growth of the OO tools market.  

6. Support higher-level development concepts such as collaborations, frameworks, 

patterns and components.  

7. Integrate best practices.  

Why Use UML? 

As the strategic value of software increases for many companies, the industry looks for 

techniques to automate the production of software and to improve quality and reduce cost 

and time-to-market. These techniques include component technology, visual 

programming, patterns and frameworks. Businesses also seek techniques to manage the 

complexity of systems as they increase in scope and scale. In particular, they recognize 

the need to solve recurring architectural problems, such as physical distribution, 

concurrency, replication, security, load balancing and fault tolerance.  

http://pigseye.kennesaw.edu/~dbraun/csis4650/A&D/UML_tutorial/what_is_uml.htm#1#1


                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  5 

 

Where Can the UML Be Used? 

The UML is intended primarily for software-intensive systems. It has been used 

effectively for such domains as 

 Enterprise information systems 

 Banking and financial services 

 Telecommunications 

 Transportation 

 Defense/aerospace 

 Retail 

 Medical electronics 

 Scientific 

 Distributed Web-based services 

The UML is not limited to modeling software. In fact, it is expressive enough to model 

non software systems, such as workflow in the legal system, the structure and behavior of 

a patient healthcare system, and the design of hardware. 

 

 

  

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  6 

Introduction of all Diagrams to be drawn Using 

Rational Rose  

A diagram is the graphical presentation of a set of elements, most often rendered as a 

connected graph of vertices (things) and arcs (relationships). A diagram is a projection 

into a system. The UML includes nine such diagrams. 

1. Class diagram  A structural diagram that shows a set of classes, 

interfaces, collaborations, and their relationships 

2. Object 

diagram  

A structural diagram that shows a set of objects and their 

relationships 

3. Use case 

diagram  

A behavioral diagram that shows a set of use cases and 

actors and their relationships 

4. Sequence 

diagram  

A behavioral diagram that shows an interaction, 

emphasizing the time ordering of messages 

5. Collaboration 

diagram  

A behavioral diagram that shows an interaction, 

emphasizing the structural organization of the objects that 

send and receive messages 

6. Statechart 

diagram  

A behavioral diagram that shows a state machine, 

emphasizing the event-ordered behavior of an object 

7. Activity 

diagram  

A behavioral diagram that shows a state machine, 

emphasizing the flow from activity to activity 

8. Component 

diagram  

A structural diagram that shows a set of components and 

their relationships 

9. Deployment 

diagram  

A structural diagram that shows a set of nodes and their 

relationships 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  7 

List of Practicals 

(As per the syllabus prescribed by G.G.S.I.P University ) 

Choose any one project and do the following exercises for that project  

 

a. Student Result Management System 

b. Library management system 

c. Inventory control system  

d. Accounting system  

e. Fast food billing system 

f. Bank loan system 

g. Blood bank system 

h. Railway reservation system  

i. Automatic teller machine 

j. Video library management system 

k. Hotel management system 

l. Hostel management system 

m. E-ticking 

n. Share online trading 

o. Hostel management system 

p. Resource management system 

q. Court case management system 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  8 

1. Write the complete problem statement  

 

2. Write the software requirement specification document 

 

3. Draw the entity relationship diagram 

 

4. Draw the data flow diagrams at level 0 and level 1 

 

5. Draw use case diagram  

 

6. Draw  activity diagram of all use cases. 

 

7. Draw state chart diagram of all use cases  

 

8. Draw sequence diagram of all use cases  

 

9. Draw collaboration diagram of all use cases  

 

10.  Assign objects in sequence diagram to classes and make class 

diagram . 

 

 

 

  

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  9 

Report Format ( instruction for the students for the preparation of lab 

record ) 

Cover page: 

 

Name of the Lab 

 ( size 20’’ , italics bold , Times New Roman ) 

 

 

 

 

 

Faculty Name:            Student 

Name: 

( 12’’ ,  Times New Roman )                                                   Roll No.:   

              Semester: 

                 Batch : 

( 12’’, Times New Roman ) 

 

 

 

College’s Logo 

 

Maharaja Agrasen Institute of technology, PSP area,           

Sector – 22, Rohini, New Delhi – 110085 

( 18’’ bold Times New Roman ) 

Student’s Name 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  10 

Roll No. 

INDEX 

S.No. Name of the Program Date  Signature 

& Date 

Remarks 

     

     

     

     

     

     

     

     

     

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  11 

 

EXCERCISE NO. 1 

 

 

AIM:  To prepare PROBLEM STATEMENT for any project. 

 

REQUIREMENTS: 

Hardware Interfaces  

 Pentium(R) 4 CPU 2.26 GHz, 128 MB RAM 

 Screen resolution of at least 800 x 600 required for proper and complete viewing 

of screens. Higher resolution would not be a problem. 

 CD ROM Driver  

Software Interfaces 

 Any window-based operating system (Windows 95/98/2000/XP/NT) 

 WordPad or Microsoft Word 

THEORY: 
 

The problem statement is the initial starting point for a project. It is basically a one to 

three page statement that everyone on the project agrees with that describes what will be 

done at a high level. The problem statement is intended for a broad audience and should 

be written in non-technical terms. It helps the non-technical and technical personnel 

communicate by providing a description of a problem. It doesn't describe the solution to 

the problem.  

 

The input to requirement engineering is the problem statement prepared by customer. 

It may give an overview of the existing system along with broad expectations from the 

new system. 

 

The first phase of requirements engineering begins with requirements elicitation i.e. 

gathering of information about requirements. Here, requirements are identified with the 

help of customer and existing system processes. So from here begins the preparation of 

problem statement.  

So, basically a problem statement describes what needs to be done without describing 

how. 

 

Conclusion: The problem statement  was written successfully by following the steps 

described above. 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  12 

EXCERCISE NO. 2 

 

Aim:  Understanding an SRS. 

Requirements: 

Hardware Requirements:  

 PC with 300 megahertz or higher processor clock speed recommended; 233 MHz 

minimum required. 

 128 megabytes (MB) of RAM or higher recommended (64 MB minimum 

supported) 

 1.5 gigabytes (GB) of available hard disk space 

  CD ROM or DVD Drive 

 Keyboard and Mouse(compatible pointing device). 

Software Requirements: 

Rational Rose, Windows XP, 

Theory: 

An SRS is basically an organization's understanding (in writing) of a customer or 

potential client's system requirements and dependencies at a particular point in time 

(usually) prior to any actual design or development work. It's a two-way insurance policy 

that assures that both the client and the organization understand the other's requirements 

from that perspective at a given point in time.  

The SRS document itself states in precise and explicit language those functions and 

capabilities a software system (i.e., a software application, an eCommerce Web site, and 

so on) must provide, as well as states any required constraints by which the system must 

abide. The SRS also functions as a blueprint for completing a project with as little cost 

growth as possible. The SRS is often referred to as the "parent" document because all 

subsequent project management documents, such as design specifications, statements of 

work, software architecture specifications, testing and validation plans, and 

documentation plans, are related to it.  

It's important to note that an SRS contains functional and nonfunctional requirements 

only; it doesn't offer design suggestions, possible solutions to technology or business 

issues, or any other information other than what the development team understands the 

customer's system requirements to be.  

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  13 

A well-designed, well-written SRS accomplishes four major goals:  

 It provides feedback to the customer. An SRS is the customer's assurance that the 

development organization understands the issues or problems to be solved and the 

software behavior necessary to address those problems. Therefore, the SRS 

should be written in natural language (versus a formal language, explained later in 

this article), in an unambiguous manner that may also include charts, tables, data 

flow diagrams, decision tables, and so on.  

 It decomposes the problem into component parts. The simple act of writing down 

software requirements in a well-designed format organizes information, places 

borders around the problem, solidifies ideas, and helps break down the problem 

into its component parts in an orderly fashion.  

 It serves as an input to the design specification. As mentioned previously, the SRS 

serves as the parent document to subsequent documents, such as the software 

design specification and statement of work. Therefore, the SRS must contain 

sufficient detail in the functional system requirements so that a design solution 

can be devised.  

 It serves as a product validation check. The SRS also serves as the parent 

document for testing and validation strategies that will be applied to the 

requirements for verification.  

SRSs are typically developed during the first stages of "Requirements Development," 

which is the initial product development phase in which information is gathered about 

what requirements are needed--and not. This information-gathering stage can include 

onsite visits, questionnaires, surveys, interviews, and perhaps a return-on-investment 

(ROI) analysis or needs analysis of the customer or client's current business 

environment. The actual specification, then, is written after the requirements have 

been gathered and analyzed.  

SRS should address the following 

The basic issues that the SRS shall address are the following: 

a) Functionality. What is the software supposed to do?  

b) External interfaces. How does the software interact with people, the system’s 

hardware, other hardware, and other software?  

c) Performance. What is the speed, availability, response time, recovery time of 

various software functions, etc.?  

d) Attributes. What are the portability, correctness, maintainability, security, etc. 

considerations?  

e) Design constraints imposed on an implementation. Are there any required 

standards in effect, implementation language, policies for database integrity, 

resource limits, operating environment(s) etc.  

  



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  14 

Chracteristics of a good SRS 

An SRS should be 

a) Correct  

b) Unambiguous  

c) Complete  

d) Consistent  

e) Ranked for importance and/or stability  

f) Verifiable  

g) Modifiable  

h) Traceable  

 Correct - This is like motherhood and apple pie. Of course you want the specification to 

be correct. No one writes a specification that they know is incorrect. We like to say - 

"Correct and Ever Correcting." The discipline is keeping the specification up to date 

when you find things that are not correct. 

Unambiguous - An SRS is unambiguous if, and only if, every requirement stated therein 

has only one interpretation. Again, easier said than done. Spending time on this area prior 

to releasing the SRS can be a waste of time. But as you find ambiguities - fix them. 

Complete - A simple judge of this is that is should be all that is needed by the software 

designers to create the software. 

Consistent - The SRS should be consistent within itself and consistent to its reference 

documents. If you call an input "Start and Stop" in one place, don't call it "Start/Stop" in 

another. 

Ranked for Importance - Very often a new system has requirements that are really 

marketing wish lists. Some may not be achievable. It is useful provide this information in 

the SRS. 

Verifiable - Don't put in requirements like - "It should provide the user a fast response." 

Another of my favorites is - "The system should never crash." Instead, provide a 

quantitative requirement like: "Every key stroke should provide a user response within 

100 milliseconds."  

Modifiable - Having the same requirement in more than one place may not be wrong - 

but tends to make the document not maintainable. 

Traceable - Often, this is not important in a non-politicized environment. However, in 

most organizations, it is sometimes useful to connect the requirements in the SRS to a 

higher level document. Why do we need this requirement? 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  15 

A sample of basic SRS Outline 

1. Introduction 

1.1 Purpose 

1.2 Document conventions 

1.3 Intended audience 

1.4 Additional information 

1.5 Contact information/SRS team members 

1.6 References  

2. Overall Description 

2.1 Product perspective 

2.2 Product functions 

2.3 User classes and characteristics 

2.4 Operating environment 

2.5 User environment 

2.6 Design/implementation constraints 

2.7 Assumptions and dependencies  

3. External Interface Requirements 
3.1 User interfaces 

3.2 Hardware interfaces 

3.3 Software interfaces 

3.4 Communication protocols and interfaces  

4. System Features 
4.1 System feature 

4.1.1 Description and priority 

4.1.2 Action/result 

4.1.3 Functional requirements 

4.2 System feature B 

5. Other Nonfunctional Requirements 
5.1 Performance requirements 

5.2 Safety requirements 

5.3 Security requirements 

5.4 Software quality attributes 

5.5 Project documentation 

5.6 User documentation  

6. Other Requirements 
Appendix A: Terminology/Glossary/Definitions list 

Appendix B: To be determined  

Conclusion: The SRS was made successfully by following the steps described above. 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  16 

 

 

 

 

SAMPLE SRS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  17 

SOFTWARE REQUIREMENTS SPECIFICATION 

 

 

 

 

 

 

ATM 
Version 1.0 

September 8, 2006 

 

 

 

 

 

AN AUTOMATED TELLER MACHINE 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  18 

Table of Contents 

1.  Introduction 

1.1  Purpose  

1.2  Scope  

1.3  Definitions, Acronyms, and Abbreviations  

1.4  References  

1.5  Overview  

2.  The Overall Description 

2.1  Product Perspective  

2.2  Product Functions  

2.3  User Characteristics  

2.4  Constraints  

2.5 Assumptions and Dependencies  

3.   External interface Requirements 

3.1 User Interfaces  

3.2 Hardware Interfaces  

3.3 Software Interfaces  

3.4 Communications Interfaces  

4. Sytem Features  

5. Other Non-Functional Requirements                           
5.1 Performance Requirements                                                               

 5.1.1 Capacity                                                                          

 5.1.2 Dynamic Requirements                                                  

 5.1.3 Quality                                                                            

5.2 Software System Attributes  

3.6.1 Reliability  

3.6.2 Availability  

3.6.3 Security  

3.6.4 Maintainability  

    5.3  Business Rules                                                                                     

 

6.  Other Requirements .............................................................................                

Appendix A: Glossary                                                                                    

Appendix S: Analysis Models                                                  



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  19 

1.  Introduction   

 

The software ATMExcl 3.0
TM

 version1.0 is to be developed for Automated Teller 

Machines (ATM). An automated teller machine (ATM) is computerized 

telecommunications device that provides a financial institution's customers a secure 

method of performing financial transactions, in a public space without the need for a 

human bank teller. Through ATMExcl 3.0
TM

 ,customers interact with a user-friendly 

interface that enables them to  access their bank accounts and perform various 

transactions. 

 

1.1  Purpose   

 
This SRS defines External Interface, Performance and Software System Attributes 
requirements of ATMExcl 3.0

TM
. This document is intended for the following group of 

people:- 
 

 Developers for the purpose of maintenance and new releases of the 
software. 

 Management of the bank. 
 Documentation writers. 
 Testers. 

 

 

1.2  Scope  

 
This document applies to Automated Teller Machine software ATM 3.0

TM
. This 

software facilitates the user to perform various transaction in his account without going 
to bank. This software offers benefits such cash withdrawals, balance transfers, deposits, 
inquiries, credit card advances and other banking related operations for customers. It also 
allows the administrator to fix the tariffs and rules as and when required. 
 
The software takes as input the login Id and tha bank account number of the user for 
login purposes. The outputs then comprise of  an interactive display that lets the user 
select the desirable function that he wants to perform.. 
 
The software is expected to complete in duration of six months and the estimated cost is 
Rs18 lakhs. 
 

1.3  Definitions, Acronyms, and Abbreviations.   

 
 

AC Alternate Current 

AIMS ATM Information Management System. 

ATM An unattended electronic machine in a public place, connected 

to a data system and related equipment and activated by a 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  20 

bank customer to obtain cash withdrawals and other banking 

services.  

Braille A system of writing and printing for blind or visually impaired 

people, in which varied arrangements of raised dots 

representing letters and numerals are identified by touch. 

BMS Bank Management Software developed by KPM Bank. 

CDMA Code Division Multiple Access, a reliable data communication 

protocol. 

CMS Card Management Software developed by KPM Bank. 

DES Data Encryption Standard. 

Dial-Up POS A message format for low cost communications. 

Electronic 

Journals 

For easier, safer information storage, related to modem. 

Internet An interconnected system of networks that connects 

computers around the world via the TCP/IP protocol. 

MB Mega Bytes 

ms Milliseconds. 

sec Seconds 

Smart Card Card without hardware which stores the user’s private keys 

within a tamper proof software guard. 

SRS Software Requirements Specification. 

Tactile 

keyboard 

Special keyboard designed to aid the visually impaired. 

TCP/IP Transmission Control Protocol/Internet Protocol. 

V  Volts 

VGA Video Graphics Adaptor is a display standard. 

 

1.4  References   

 

The references for the above software are as follows:- 

 
i. www.google.co.in 

 
ii. www.winkipedia.com 

 
iii. IEEE. Software Requirements Specification Std. 830-1993. 

 
iv. Chevy Chase Bank, UMBC Branch. 

 
v. Russell C. Bjork Requirements Statement for Example ATM System. 

Online. 
         URL: http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/ 

http://www.google.co.in/
http://www.winkipedia.com/
http://www.math-cs.gordon.edu/local/courses/cs211/ATMExample/


                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  21 

 

1.5  Overview   

 

Section 1.0 discusses the purpose and scope of the software. 

Section 2.0 describes the overall functionalities and constraints of   

                   the software and user characteristics.  

Section 3.0 details all the requirements needed to design the software. 

2.  The Overall Description   

2.1  Product Perspective   

 

 The ATM is a single functional unit consisting of various sub-

components. 

 This software allows the user to access their bank accounts remotely 

through an ATM without any aid of human bank teller. 

 This software also allows the perform various other functions apart from 

just accessing his bank account such as mobile bill clearings etc. 

 Some of its hardware components are cassettes, memory, drives, 

dispensers i.e. for receipts and cash, a card reader, printer, switches, a 

console, a telephone dialer port, a networking port and disks.  

 The ATM communicates with the bank’s central server through a dial-up 

communication link.  

 The Memory of the system shall be 20MB. 

 The Cassette capacity shall be at least 2000 notes. 

 

2.2 Product Functions  

 

The major functions that ATMExcl 3.0
TM 

performs are described as follows:- 

 

 Language Selection:- After the user has logged in, the display provides 

him with a list of languages from which he can select any one in order to 

interact with the machine throughout that session. After the language 

selection the user is prompted with an option that whether he wants the 

selected language to be fixed for future use so that he is not offered with 

the language selection menu in future thus making the transaction a bit 

faster. User also has the freedom to switch to a different language 

mentioned in the list in between that session. 

 Account Maintenance:- The various functions that a user can perform 

with his account are as follows:- 

 Account Type:-The user has the freedom to select his account type to 

which all the transactions are made, i.e. he can select whether the 

account is current account or savings account etc. 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  22 

 Withdrawal/Deposit: The software allows the user to select the kind of 

operation to be performed i.e. whether he wants to withdraw or deposit 

the money. 

 Amount:- The amount to be withdrawan or deposited is then mentioned 

by the user.  

 Denominations:- The user is also provided with the facility to mention 

the required denominations. Once he enters his requirements the 

machine goes through its calculations on the basis of current resources 

to check whether it is possible or not. If yes, the amount is given to the 

user otherwise other possible alternatives are displayed. 

 Money Deposition:- Money deposition shall be done with an envelope. 

After typing the amount to be deposited and verification of the same, 

the customer must insert the envelope in the depositary. 

 Balance Transfer:- Balance transfer shall be facilitated between any 

two accounts linked to the card for example saving and checking 

account. 

 Balance Enquiry:- Balance enquiry for any account linked to the card 

shall be facilitated. 

 Billing:- Any transaction shall be recorded in the form of a receipt and the 

same would be dispensed to the customer. The billing procedures are 

handled by the billing module that enable user to choose whether he wants 

the printed statement of the transaction or just the updation in his account. 

 Cancelling:- The customer shall abort a transaction with the press of a 

Cancel key. For example on entering a wrong depositing amount. In 

addition the user can also cancel the entire session by pressing the abort 

key and can start a fresh session all over again. 

 Map locating other machines:- The machine also has a facility of 

displaying the map that marks the locations of other ATM machines of the 

same bank in the entire city. 

 Mobile Bills Clearings:- The machine also allows the user to clear off his 

pending mobile bills there only, if the name of his operator is mentioned 

there in the list. The machine displays the list of the companies supported 

by that bank to the user. 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  23 

 

 

 

 

 

2.3  User Characteristics  

 

There are different kind of users that will be interacting with the system. The intended 

user of the software are as follows:- 

 User A: A novice ATM customer.  This user has little or no experience 

with electronic means of account management and is not a frequent user 

of the product. User A will find the product easy to use due to simple 

explanatory screens for each ATM function. He is also assisted by an 

intarctive teaching mechanism at every atep of the transaction, both with 

the help of visual and audio help sessions. 

 User B: An experienced customer. This user has used an ATM on several 

occasions before and does most of his account management through the 

ATM. There is only a little help session that too at the beginning of the 

session thus making the transaction procedure more faster.   

 Maintenance Personnel: A bank employee. This user is familiar with the 

functioning of the ATM. This user is in charge of storing cash into the 

ATM vault and repairing the ATM in case of malfunction. This user is 

presented with a different display when he logs in with the 

admninistrator’s password and is provided with options different from that 

of normal user. He has the authority to change or restrict various features 

provided by the software in situations of repairing. 

 

2.4  Constraints   

 

The major constraints that the project has are as follows:- 

 The ATM must service at most one person at a time. 

 The number of invalid pin entries attempted must not exceed three. After 

three unsuccessful login attempts, the card is seized/blocked and need to 

be unlocked by the bank. 

 The simultaneous access to an account through both, the ATM and the 

bank is not supported. 

 The minimum amount of money a user can withdraw is Rs 100/- and the 

maximum amount of money a user can withdraw in a session is 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  24 

Rs.10,000/- and the maximum amount he can withdraw in a day is Rs 

20,000/- 

 Before the transaction is carried out, a check is performed by the machine 

to ensure that a minimum amount of Rs 1000/- is left in the user’s account 

after the withdrawal failing which the withdrawal is denied.  

 The minimum amount a user can deposit is Rs 100/- and the maximum 

amount he can deposit is Rs 10,000/-. 

 A user can select only that cellular operator for mobile bill clearings that 

is supported by the bank. 

 The software requires a minimum memory of 20GB 

 The databse used should be Oracle7.0. 

 There shall be a printer installed with the machine to provide the user with 

the printed statement of the transaction. 

 For voice interactions, speakers should also be there to accompany the 

machine. 

 

2.5 Assumptions and Dependencies 

 

The requirements stated in the SRS could be affected by the following factors: 

 One major dependency that the project might face is the changes that need to be 
incorporated with the changes in the bank policies regarding different services. As 
the policies changes the system needs to be updated with the same immediately. A 
delay in doing the same will result to tremendous loss to the bank. So this should 
be changed as and when required by the developer.   

 Another constraint relating to the operating environment is that we are specific to 
Oracle Database. 

 The project could be largely affected if  some amount is withdrawn from the 
user’s account from the bank at the same time when someone is accessing that 
account through the ATM machine. Such a condition shall be taken care of. 

 At this stage no quantitive measures are imposed on the software in terms of 
speed and memory although it is implied that all functions will be optimized with 
respect to speed and memory. 

  

It is furthermore assumed that the scope of the package will increase considerably in 

the future. 

 

 

 

 

3. External Interface Requirements 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  25 

3.1.1 User Interface Requirements 

 

The interface provided to the user should be a very user-friendly one and it 

should provide an optional interactive help for each of the service listed. The 

interface provided is a menu driven one and the following screens will be 

provided:- 

 

1. A login screen is provided in the beginning for entering the required 

username/pin no. and account number. 

2. An unsuccessful login leads to a reattempt(maximum three) screen for 

again entering the same information. The successful login leads to a 

screen displaying a list of supported languagesfrom which a user can 

select any one. 

3. In case of administrator, a screen will be shown having optins to reboot 

system, shut down system, block system, disable any service. 

4. In case of reboot/ shut down, a screen is displayed to confirm the user’s 

will to reboot and also allow the user to take any backup if needed. 

5. In case of blocking system, a screen is provided asking for the card no. 

By entering the carnd no of a particular user, system accees can be 

blocked for him. 

6. Administrator is also provided with a screen that enables him to block 

any service provided to the user by enterin the name of the service or by 

selecting it from the list displayed. 

7. After the login, a screen with a number of options is then shown to the 

user. It contains all the options along with their brief description to 

enable the user to understand their functioning and select the proper 

option. 

8. A screen will be provided for user to check his account balance. 

9. A screen will be provided that displays the location of all other ATMs of 

same bank elsewhere in the city. 

10. A screen will be provided for the user to perform various transactions in 

his account. 

 

The following reports will be generated after each session dealt with in the 

machine:- 

1. The login time and logout time along with the user’s pin no and account 

number is registered in the bank’s database. 

2. The ATM’s branch ID through which the session is established is also 

noted down in the bank’s database. 

3. Various changes in the user’s account after the transactions,if any, are 

reported in the database. 

4. A printed statement is generated for the user displaying all the 

transactions he performed. 

 

 Other various user interface requirements that need to be fulfilled are as 

follows:- 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  26 

 The display screen shall be of 10" VGA color type. 

 The display screen shall have 256 color resolution. 

 The display screen shall also support touchscreen facility. 

 The speakers shall support Yamaha codecs.  

 The keypad shall consist of 16 tactile keys. 

 There shall be 8 tactile function keys. 

 The keyboard will be weather resistant. 

 The transaction receipt shall be 3.1" × 6". 

 The statement receipt shall be 4.2" × 12". 

 The deposit envelopes shall be 9" long and 4" wide. 

 

3.1.2 Hardware Interface Requirements 

 

There are various hardware components with which the machine is required 

to interact. Various hardware interface requirements that need to be fulfilled 

for successful functioning of the software are as follows:- 

 The ATM power supply shall have a 10/220 V AC manual switch.  

 The ATM card should have the following physical dimensions:- 

o Width    -   85.47mm-85.72mm 

o Height   -   53.92mm-54.03mm 

o Thickness -     0.76mm+0.08mm 

 The card reader shall be a magnetic stripe reader 

 The card reader shall have Smart card option. 

 The slot for a card in thye card reader may include an extra 

indentation for the embossed area of the card. In effect it acts as a 

polarization key and may be used to aid the correct insertion 

orientation of the card. This is an additional characteristic to the 

magnetic field sensor which operates off the magnetic stripe and is 

used to open a mechanical gate on devices such as ATMs. 

 There shall be a 40 column dot matrix receipt printer. 

 There shall be a 40 column dot matrix statement printer. 

 The receipt dispenser shall be a maximum of 4" width and 0.5" 

thickness. 

 The statement dispenser shall be a maximum of 5" width and 0.5" 

thickness. 

 The envelope depository shall be a maximum of 4.5" width, 10" 

length and 0.5" thickness. 

 Screen resolution of at least 800X600-required for proper and 

complete viewing of screens. Higher resolution would not be a 

problem. 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  27 

 

3.1.3 Software Interface Requirements 

 

In order to perform various different functions, this software needs to interact 

with various other softwares. So there are certain software interface 

requirements that need to be fulfilled which are listed as follows:- 

 The transaction management software used to manage the 

transaction and keep track of resources shall be BMS version 2.0. 

 The card management software used to verify pin no and login  

shall be CMS version 3.0. 

 Yamaha codecs 367/98 for active speakers. 

 The database used to keep record of user accounts shall be Oracle 

version7.0. 

 

3.1.4 Communication Interface Requirements 

 

The machine needs to communicate with the main branch for each session for 

various functions such as login verification, account access etc. so the 

following are the various communication interface requirements that are 

needed to be fulfilled in order to run the software successfully:- 

 The system will employ dial-up POS with the central server for 

low cost communication. 

 The communication protocol used shall be TCP/IP. 

 Protocol used for data transfer shall be File Transfer 

Protocol.(FTP) 

 

 

4. System Features 

 

 

1. Remote Banking and Account Management 

 

 

Description 

 

The system is designed to provide the user with the facility of remote banking 

and perform various other functions at an interface without any aid of human 

bank teller. The functioning of the system shall be as follows:- 

                  At the start, the user is provided with a log in screen and he is required 

to enter his PIN NO. and Account details which are then verified by the machine. 

In case of an unsuccessful attempt a user is asked again for his credentials but the 

maximum number of attempt given to the user is limited to 3 only, failing which 

his card is blocked and need to be unblocked by the bank for any future use. 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  28 

                  After a successful log in, the user is presented with a list of language. 

The user can select any one in the list for interaction with the machine for the 

entire session. After the language selection the user is also asked whether he 

wants to fix that language for future use also so that he is never asked for 

language in future. In addition there is also a facility for the user to switch to any 

other language during that session. 

                  After the language selection, the user is directed towards a main page 

that displays a set of options/services along with their brief description, enabling 

the user to understand their functioning. The user can select any of the listed 

option and can continue with the transaction. 

                 The machine also provides the user with a number of miscellaneous 

services such as: 

                 The machine lists a set of operators that are supported by the bank. A 

user can clear off his pending mobile phone bills be selecting his operator. 

                  The machine also has the facility to display a map that marks the 

location of other ATMs of the same bank in the city. This may help the user to 

look for the ATM nearest to  his destination. 

                   At any moment if the user wants to abort the transaction, he is 

provided with an option to cancel it. Just by pressing the abort button he can 

cancel all the changes made so far and can begin with a new transaction. 

                   After the user is finished with his work, for security purpose, he is 

required to log out and then take his card out of the slot. 

 

 

 

 

 

Validity Checks 

 

            In order to gain access to the system, the user is required to enter his/her 

correct user id/pin no and account no failing which his card may be blocked.  

            The user can access only one account at a time and can enter only one 

account no. 

            Also if the user is an administrator, he is required to enter his login id in 

order to access and change the facilities provided by the system. 

 

Sequencing Information 

 

The information about the users and their account should be entered into the 

database prior to any of the transactions and the backup be maintained for all 

account information 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  29 

 

Error Handling/ Response to Abnormal Situations 
 

If any of the above validation/sequencing flow does not hold true, appropriate 

error messages will be prompted to the user for doing the needful. 

 

2.  Receipt Generation 

 

 After ech transaction user has performed, a receipt is generated that contains all the 

information about the transaction. The format of the generated receipt is as shown 

below:- 

 

 

KPM  BANK 

 

Branch name/Id 

(address) 

 

Login Time:-   Date:- 

 

Account No:- 

User Name:- 

 

TRANSACTIONS: 

 

FROM                          TO                        TYPE                        AMOUNT 

    

    

    

    

 

 

Logout Time:-   BARCODE 

 

 

Thank You For your visit. 

See you soon. 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  30 

 
 

 

5.  Other Nonfunctional Requirements 

 

5.1 Performance Requirements 

 

The following list provides a brief summary of the performance requirements for the 

software:  

 

5.1.1    Capacity 
 The ATM shall provide customers a 24 hour service.  

 

5.1.2    Dynamic requirements 

 The card verification time must not exceed 0.8 sec. under normal 

server workload and 1 sec. under peak server workload. 

 The pin number verification time must not exceed 0.3 sec. under 

normal server workload and 0.5 sec. under peak server workload. 

 Account balance display time must not exceed 2 sec. under normal 

server workload and 3 sec. under peak server workload. 

 Account balance transfer time must not exceed 3 sec. under 

normal server workload and 4 sec. under peak server workload. 

 Cash withdrawal transaction time must not exceed 4 sec. under 

normal server workload and 5 sec. under peak server workload. 

 Deposit transaction time after insertion of the deposit envelope 

must not exceed 5 sec. under normal server workload and 6 sec. 

under peak server workload. 

 Receipt printing time after must not exceed 3 sec. under normal 

server and peak server workload.  

 Touch screen and button response time must not exceed 5000ms.  

 Credit card advance time must not exceed 6 sec. under normal 

traffic and server and peak traffic and server workload.  

 

5.1.3 Quality – The primary objective is to produce quality software. As 
the quality of a piece of software is difficult to measure quantitatively, 
the following guidelines will be used when judging the quality of the 
software: 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  31 

1. Consistency – All code will be consistent with respect to the 

style. (This is implied when adhering to the standard). 

2. Test cases – All functionality will be thoroughly tested 

 

5.2 Software System Attributes 

 

5.2.1    Reliability 

 The data communication protocol shall be such that it ensures 

reliability and quality of data and voice transmission in a mobile 

environment. For example, CDMA. 

 The memory system shall be of non-volatile type.  

 

5.2.2 Availability 

 The product will have a backup power supply incase of power 

failures. 

 Any abnormal operations shall result in the shutting down of the 

system. 

 After abnormal shutdown of the ATM, the system shall have to be 

manually restarted by a maintenance personnel. 

 There should be no inconsistency introduced in the account during 

whose transaction the system is abnormally shut down. 

 

5.2.3 Security 

 The system shall be compatible with AIMS security standards. 

 The system shall have two levels of security i.e. ATM card and pin 

verification both authenticated by the CMS software. 

 The Encryption standard used during pin transmission shall be 

triple DES. 

 The password shall be 6-14 characters long. 

 Passwords shall not contain name of customers as they are easy to 

be hacked. 

 Passwords can contain digit, hyphen and underscore. 

 User should be provided with only three attempts for login failing 

which his card needs to be blocked. 

 There shall be a security camera installed near the ATM.  

 There shall be a secured cash vault with a combination locking 

system. 

 The product cabinet cover shall be manufactured using Fiber glass 

for security purposes. 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  32 

5.2.4 Maintainability 

 The system components i.e. modem, memory, disk, drives shall be 

easily serviceable without requiring access to the vault. 

 The system should have the mechanism of self-monitoring 

periodically in order to detect any fault. 

 The system should inform the main branch automatically as soon 

as it detects any error. The kind of fault and the problem being 

encountered should also be mentioned by the system 

automatically.  

 

 

5.3 Business Rules 

The business rules for the software are as follows:  

 The Administrator has the authority to fix the rules and regulations and to set or 
update the policies as and when required. 

 The staff at the bank performs the following: 
a. Making the entries in the system regarding all the details of the bank 

account of the user. 
b. Keeping the bank account of the user updated as soon as changes are 

encountered so that the data is in consistent state. 
c. Blocking or seizing of the account of user on discovery of any illegal 

transaction. 
d. Unblocking of ATM card that got blocked due to more than three 

unsuccessful login attempt. 
e. Blocking of a lost/stolen ATM card on complaint of the user, only if he 

presents his verification and a FIR filed for that case. 
f. Costantly monitor all the ATMs in the city to check whether any one of 

them is encountering any fault. 
g. Immediately correct any fault discovered in any of the ATM. 
h. Maintain the backup of all the accounts for reliability purposes. 
i. Rollback all the changes made in an account during whose transaction an 

ATM got abnormal shutdown.    
 In case of loss of the ATM card. The user has to lodge a First Investigation 

Report(FIR) and present its one copy to bank officials for card blocking purposes. 
 A log of the following annexures is generated by the system: 

 User bank account details. 
 Updations made in the user account along with date, time and the 

changes made. 
 Schedule of fixed assets. 

  

 6   Other Requirements 

None. 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  33 

 

Appendix A: Glossary 

 

 

AIMS  - ATM Information Management System. 

ATM  - An unattended electronic machine in a public place, connected  

to a data system and related equipment and activated by a bank 
customer to obtain cash withdrawals and other banking services 

 

Braille - A system of writing and printing for blind or visually impaired  

people, in which varied arrangements of raised dots representing 
letters and numerals are identified by touch. 

 

CDMA  - Code Division Multiple Access, a reliable data 
communication  

protocol. 

CMS  - Card Management Software developed by KPM Bank. 

Dial-Up  - A message format for low cost communications. 

POS 

Internet - An interconnected system of networks that connects computers  

around the world via the TCP/IP protocol. 

Smart Card - Card without hardware which stores the user’s private keys  

within a tamper proof software guard. 

Tactile - Special keyboard designed to aid the visually impaired.   

Keyboard 

TCP/IP - Transmission Control Protocol/Internet Protocol. 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  34 

 

EXCERCISE NO. 3 

 

AIM :- 
 

To draw a sample ENTITY RELATIONSHIP DIAGRAM  for  real project or system. 

 

 

Hardware Requirements: 

 
Pentium 4 processor (2.4 GHz), 128 Mb RAM, Standard keyboard n mouse, colored 

monitor. 

 

 

Software Requirements: 
 

Rational Rose, Windows XP, 

 THEORY  

Entity Relationship Diagrams are a major data modelling tool and will help organize the 

data in your project into entities and define the relationships between the entities. This 

process has proved to enable the analyst to produce a good database structure so that the 

data can be stored and retrieved in a most efficient manner.  

 

Entity 

 
A data entity is anything real or abstract about which we want to store data. Entity types 

fall into five classes: roles, events, locations, tangible things or concepts. E.g. employee, 

payment, campus, book. Specific examples of an entity are called instances. E.g. the 

employee John Jones, Mary Smith's payment, etc.   

Relationship 
A data relationship is a natural association that exists between one or more entities. E.g. 

Employees process payments. Cardinality defines the number of occurrences of one 

entity for a single occurrence of the related entity. E.g. an employee may process many 

payments but might not process any payments depending on the nature of her job.  

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  35 

Attribute  
   

A data attribute is a characteristic common to all or most instances of a particular entity. 

Synonyms include property, data element, field. E.g. Name, address, Employee Number, 

pay rate are all attributes of the entity employee. An attribute or combination of attributes 

that uniquely identifies one and only one instance of an entity is called a primary key or 

identifier. E.g. Employee Number is a primary key for Employee.   

AN ENTITY RELATIONSHIP DIAGRAM METHODOLOGY: (One way of doing 

it) 

1. Identify Entities  
Identify the roles, events, locations, tangible things or concepts about 

 which the end-users want to store data.  

2. Find Relationships  
Find the natural associations between pairs of entities using a relationship 

 matrix. 

3. Draw Rough ERD  
Put entities in rectangles and relationships on line segments connecting the 

 entities.  

4. Fill in Cardinality  
Determine the number of occurrences of one entity for a single occurrence  

of the related entity.  

5. Define Primary Keys  
Identify the data attribute(s) that uniquely identify one and only one  

occurrence of each entity.  

6. Draw Key-Based ERD  
Eliminate Many-to-Many relationships and include primary and foreign  

keys in each entity.  

7. Identify Attributes  
Name the information details (fields) which are essential to the system  

under development.  

8. Map Attributes  For each attribute, match it with exactly one entity that it describes.  

9. Draw fully attributed ERD  
Adjust the ERD from step 6 to account for entities or relationships  

discovered in step 8.  

10. Check Results  
Does the final Entity Relationship Diagram accurately depict the system  

data?  

A SIMPLE EXAMPLE 

A company has several departments. Each department has a supervisor and at least one 

employee. Employees must be assigned to at least one, but possibly more departments. At 

least one employee is assigned to a project, but an employee may be on vacation and not 

assigned to any projects. The important data fields are the names of the departments, 

projects, supervisors and employees, as well as the supervisor and employee number and 

a unique project number.   

1. Identify Entities  

The entities in this system are Department, Employee, Supervisor and Project. One is 

tempted to make Company an entity, but it is a false entity because it has only one 

instance in this problem. True entities must have more than one instance.   



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  36 

2. Find Relationships  

We construct the following Entity Relationship Matrix:   

   

  Department Employee Supervisor     Project 

Department   is assigned  run by    

Employee belongs to     works on 

Supervisor runs       

Project   uses      

 

3. Draw Rough ERD  

We connect the entities whenever a relationship is shown in the entity Relationship 

Matrix.   

 

4. Fill in Cardinality  

From the description of the problem we see that:   

 Each department has exactly one supervisor.   

 A supervisor is in charge of one and only one department.   

 Each department is assigned at least one employee.   

 Each employee works for at least one department.   

 Each project has at least one employee working on it.   

 An employee is assigned to 0 or more projects.   



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  37 

 

5. Define Primary Keys  

The primary keys are Department Name, Supervisor Number, Employee Number, Project 

Number.   

6. Draw Key-Based ERD  

There are two many-to-many relationships in the rough ERD above, between Department 

and Employee and between Employee and Project. Thus we need the associative entities 

Department-Employee and Employee-Project. The primary key for Department-

Employee is the concatenated key Department Name and Employee Number. The 

primary key for Employee-Project is the concatenated key Employee Number and Project 

Number.   

 

7. Identify Attributes 

The only attributes indicated are the names of the departments, projects, supervisors and 

employees, as well as the supervisor and employee NUMBER and a unique project 

number.   

8. Map Attributes  

Attribute    Entity    Attribute           Entity 

Department 

Name       

Department Supervisor 

Number       

Supervisor 

Employee 

Number         

Employee Supervisor 

Name       

Supervisor 

Employee 

Name         

Employee Project 

Name          

Project 

    Project 

Number         

Project 

           



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  38 

9. Draw Fully Attributed ERD  

 

10. Check Results  

The final ERD appears to model the data in this system well.   

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  39 

FURTHER DISCUSSION: 

Step 1. Identify Entities  

A data entity is anything real or abstract about which we want to store data. Entity types 

fall into five classes: roles, events, locations, tangible things, or concepts. The best way to 

identify entities is to ask the system owners and users to identify things about which they 

would like to capture, store and produce information. Another source for identifying 

entities is to study the forms, files, and reports generated by the current system. E.g. a 

student registration form would refer to Student (a role), but also Course (an event), 

Instructor (a role), Advisor (a role), Room (a location), etc.   

Step 2. Find Relationships  

There are natural associations between pairs of entities. Listing the entities down the left 

column and across the top of a table, we can form a relationship matrix by filling in an 

active verb at the intersection of two entities which are related. Each row and column 

should have at least one relationship listed or else the entity associated with that row or 

column does not interact with the rest of the system. In this case, you should question 

whether it makes sense to include that entity in the system.   

. A student is enrolled in one or more courses 

     subject    verb           objects 

Step 3. Draw Rough ERD  

Using rectangles for entities and lines for relationships, we can draw an Entity 

Relationship Diagram (ERD).   

Step 4. Fill in Cardinality  

At each end of each connector joining rectangles, we need to place a symbol indicating 

the minimum and maximum number of instances of the adjacent rectangle there are for 

one instance of the rectangle at the other end of the relationship line. The placement of 

these numbers is often confusing. The first symbol is either 0 to indicate that it is possible 

for no instances of the entity joining the connector to be related to a given instance of the 

entity on the other side of the relationship, 1 if at least one instance is necessary or it is 

omitted if more than one instance is required. For example, more than one student must 

be enrolled in a course for it to run, but it is possible for no students to have a particular 

instructor (if they are on leave).   

The second symbol gives the maximum number of instances of the entity joining the 

connector for each instance of the entity on the other side of the relationship. If there is 

only one such instance, this symbol is 1. If more than 1, the symbol is a crows foot 

opening towards the rectangle.   

If you read it like a sentence, the first entity is the subject, the relationship is the verb, the 

cardinality after the relationship tells how many direct objects (second entity) there are.   

     I.e. A student is enrolled in one or more courses 

              subject    verb           objects 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  40 

Step 5. Define Primary Keys  

For each entity we must find a unique primary key so that instances of that entity can be 

distinguished from one another. Often a single field or property is a primary key (e.g. a 

Student ID). Other times the identifier is a set of fields or attributes (e.g. a course needs a 

department identifier, a course number, and often a section number; a Room needs a 

Building Name and a Room Number). When the entity is written with all its attributes, 

the primary key is underlined.   

Step 6. Draw Key-Based ERD  

Looking at the Rough Draft ERD, we may see some relationships which are non-specific 

or many-to-many. I.e., there are crows feet on both ends of the relationship line. Such 

relationships spell trouble later when we try to implement the related entities as data 

stores or data files, since each record will need an indefinite number of fields to maintain 

the many-to-many relationship.   

Fortunately, by introducing an extra entity, called an associative entity for each many-to-

many relationship, we can solve this problem. The new associative entity's name will be 

the hyphenation of the names of the two originating entities. It will have a concatenated 

key consisting of the keys of these two entities. It will have a 1-1 relationship with each 

of its parent entities and each parent will have the same relationship with the associative 

entity that they had with each other before we introduced the associative entity. The 

original relationship between the parents will be deleted from the diagram.   

The key-based ERD has no many-to-many relationships and each entity has its primary 

and foreign keys listed below the entity name in its rectangle.   

Step 7. Identify Attributes  

A data attribute is a characteristic common to all or most instances of a particular entity. 

In this step we try to identify and name all the attributes essential to the system we are 

studying without trying to match them to particular entities. The best way to do this is to 

study the forms, files and reports currently kept by the users of the system and circle each 

data item on the paper copy. Cross out those which will not be transferred to the new 

system, extraneous items such as signatures, and constant information which is the same 

for all instances of the form (e.g. your company name and address). The remaining 

circled items should represent the attributes you need. You should always verify these 

with your system users. (Sometimes forms or reports are out of date.)   

Step 8. Map Attributes  

For each attribute we need to match it with exactly one entity. Often it seems like an 

attribute should go with more than one entity (e.g. Name). In this case you need to add a 

modifier to the attribute name to make it unique (e.g. Customer Name, Employee Name, 

etc.) or determine which entity an attribute "best' describes. If you have attributes left 

over without corresponding entities, you may have missed an entity and its corresponding 

relationships. Identify these missed entities and add them to the relationship matrix now.   



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  41 

Step 9. Draw Fully-Attributed ERD  

If you introduced new entities and attributes in step 8, you need to redraw the entity 

relationship diagram. When you do so, try to rearrange it so no lines cross by putting the 

entities with the most relationships in the middle. If you use a tool like Systems 

Architect, redrawing the diagram is relatively easy.   

Even if you have no new entities to add to the Key-Based ERD, you still need to add the 

attributes to the Non-Key Data section of each rectangle. Adding these attributes 

automatically puts them in the repository, so when we use the entity to design the new 

system, all its attributes will be available.   

Step 10. Check Results  

Look at your diagram from the point of view of a system owner or user. Is everything 

clear? Check through the Cardinality pairs. Also, look over the list of attributes 

associated with each entity to see if anything has been omitted.  

 

 

 

 

 

 

Conclusion: The entity relationship diagram  was made successfully by following the 

steps described above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  42 

 

 

EXCERCISE NO. 4 

 

 

AIM:  To prepare DATA FLOW DIAGRAM  for any project. 

 

REQUIREMENTS: 

Hardware Interfaces  

 Pentium(R) 4 CPU 2.26 GHz, 128 MB RAM 

 Screen resolution of at least 800 x 600 required for proper and complete viewing 

of screens. Higher resolution would not be a problem. 

 CD ROM Driver  

Software Interfaces 

 Any window-based operating system (Windows 95/98/2000/XP/NT) 

 WordPad or Microsoft Word 

THEORY 

Data flow diagrams illustrate how data is processed by a system in terms of inputs and 

outputs. 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  43 

 

 

Data Flow Diagram Notations 

You can use two different types of notations on your data flow diagrams: Yourdon & 

Coad or Gane & Sarson. 

 

Process Notations 

 
Yourdon and Coad 

Process Notations  

 

 
Gane and Sarson 

Process Notation  



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  44 

Process 

A process transforms incoming data flow into outgoing data flow. 

  

 

Datastore Notations 

 
Yourdon and Coad 

Datastore Notations  

 

 

 
Gane and Sarson 

Datastore Notations  

DataStore 

Datastores are repositories of data in the system. They are sometimes also referred to as 

files. 

  

 

Dataflow Notations 

 
Dataflow 

Dataflows are pipelines through which packets of information flow. Label the arrows 

with the name of the data that moves through it. 

  

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  45 

HOW TO DRAW DATA FLOW DIAGRAMS (cont'd) 

 

 

Data Flow Diagram Layers 

Draw data flow diagrams in several nested layers. A single process node on a high level 

diagram can be expanded to show a more detailed data flow diagram. Draw the context 

diagram first, followed by various layers of data flow diagrams. 

 

The nesting of data flow layers  

 

 

 

Context Diagrams 

A context diagram is a top level (also known as Level 0) data flow diagram. It only 

contains one process node (process 0) that generalizes the function of the entire system in 

relationship to external entities. 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  46 

 

 

External Entity Notations 

 
External Entity 

External entities are objects outside the system, with which the system communicates. 

External entities are sources and destinations of the system's inputs and outputs. 

  

 

 

DFD levels 

The first level DFD shows the main processes within the system. Each of these processes 

can be broken into further processes until you reach pseudocode. 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  47 

 

An example first-level data flow diagram  

 

Conclusion: The dataflow   diagram was made successfully by following the steps 

described above. 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  48 

 

EXERCISE NO. 5  

 

Aim: 
 

Steps to draw the Use Case Diagram using Rational Rose. 

 

 

Hardware Requirements: 

 
Pentium 4 processor (2.4 GHz), 128 Mb RAM, Standard keyboard n mouse, colored 

monitor. 

 

 

Software Requirements: 
 

Rational Rose, Windows XP, 

  

Theory: 

According to the UML specification a use case diagram is “a diagram that shows the 

relationships among actors and use cases within a system.”  Use case diagrams are often 

used to: 

 Provide an overview of all or part of the usage requirements for a system or 

organization in the form of an essential model or a business model 

 Communicate the scope of a development project 

 Model your analysis of your usage requirements in the form of a system use case 

model 

Use case models should be developed from the point of view of your project stakeholders 

and not from the (often technical) point of view of developers.  There are guidelines for: 

Use Cases  

Actors  

Relationships  

System Boundary Boxes 

 

http://www.agilemodeling.com/style/useCaseDiagram.htm#Relationships
http://www.agilemodeling.com/style/useCaseDiagram.htm#SystemBoundaryBoxes


                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  49 

 

 

1.                Use Cases 

A use case describes a sequence of actions that provide a measurable value to an actor.  A 

use case is drawn as a horizontal ellipse on a UML use case diagram. 

1. Use Case Names Begin With a Strong Verb 

2. Name Use Cases Using Domain Terminology 

3. Place Your Primary Use Cases In The Top-Left Corner Of The Diagram 

4. Imply Timing Considerations By Stacking Use Cases. 

 

2.                Actors 

An actor is a person, organization, or external system that plays a role in one or more 

interactions with your system (actors are typically drawn as stick figures on UML Use 

Case diagrams).  

1. Place Your Primary Actor(S) In The Top-Left Corner Of The Diagram 

2. Draw Actors To The Outside Of A Use Case Diagram 

3. Name Actors With Singular, Business-Relevant Nouns 

4. Associate Each Actor With One Or More Use Cases 

5. Actors Model Roles, Not Positions 

6. Use <<system>> to Indicate System Actors 

7. Actors Don’t Interact With One Another 

8. Introduce an Actor Called “Time” to Initiate Scheduled Events 

 

3.                Relationships 

There are several types of relationships that may appear on a use case diagram: 

 An association between an actor and a use case 

 An association between two use cases 

 A generalization between two actors 

 A generalization between two use cases 

Associations are depicted as lines connecting two modeling elements with an optional 

open-headed arrowhead on one end of the line indicating the direction of the initial 

invocation of the relationship. Generalizations are depicted as a close-headed arrow with 

the arrow pointing towards the more general modeling element. 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  50 

1. Indicate An Association Between An Actor And A Use Case If The Actor 

Appears Within The Use Case Logic 

2. Avoid Arrowheads On Actor-Use Case Relationships   

3. Apply <<include>> When You Know Exactly When To Invoke The Use Case 

4. Apply <<extend>> When A Use Case May Be Invoked Across Several Use Case 

Steps   

5. Introduce <<extend>> associations sparingly 

6. Generalize Use Cases When a Single Condition Results In Significantly New 

Business Logic   

7. Do Not Apply <<uses>>, <<includes>>, or <<extends>> 

8. Avoid More Than Two Levels Of Use Case Associations 

9. Place An Included Use Case To The Right Of The Invoking Use Case 

10. Place An Extending Use Case Below The Parent Use Case   

11. Apply the “Is Like” Rule to Use Case Generalization 

12. Place an Inheriting Use Case Below The Base Use Case 

13. Apply the “Is Like” Rule to Actor Inheritance  

14. Place an Inheriting Actor Below the Parent Actor 

   

4.                System Boundary Boxes 

The rectangle around the use cases is called the system boundary box and as the name 

suggests it indicates the scope of your system – the use cases inside the rectangle 

represent the functionality that you intend to implement.   

1. Indicate Release Scope with a System Boundary Box.  

2. Avoid Meaningless System Boundary Boxes. 

  

Creating Use Case Diagrams 

we start by identifying as many actors as possible. You should ask how the actors interact 

with the system to identify an initial set of use cases. Then, on the diagram, you connect 

the actors with the use cases with which they are involved. If actor supplies information, 

initiates the use case, or receives any information as a result of the use case, then there 

should be an association between them. 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  51 

 

Procedure (for rational rose): 

 Click on the File menu and select New. 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  52 

 Now from the Dialogue Box that appears ,select the language which you want to 

use for creating your model. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  53 

 In the left hand side window of Rational Rose right click on “Use Case view” and 

select New>Use Case Diagram. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  54 

 Enter the name of new Use Case file in the space provided,and then click on that 

file name. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  55 

 

 You can now use the window that appears on right hand side to draw your Use 

Case diagram using the buttons provided on the vertical toolbar. 

    

 

 
 

 

 

Conclusion: The use case diagram was made successfully by following the steps 

described above. 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  56 

Some Sample Use Case Diagrams are given below for illustration purpose: 

 

User/BT

Software Updation

Signalling Management

Mobility Management

Data Transfer

Searching

Authentication

Administrator

 
 

 

 

Use Case Diagram for Bluetooth Software 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  57 

 

 

 

Use Case Diagram for Resource Management 
 

 

Report 

Update 

Administrator 

Resources 

Enquiry 

Booking 

login 

Cancellation of Booked Hall 

Employee 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  58 

 

EXERCISE  NO. 6 

 

AIM :- 
 

To draw a sample activity diagram for  real project or system. 

 

 

 

Hardware Requirements: 

 
Pentium 4 processor (2.4 GHz), 128 Mb RAM, Standard keyboard n mouse, colored 

monitor. 

 

 

Software Requirements: 
 

Rational Rose, Windows XP, 

  

THEORY 

UML 2 activity diagrams are typically used for business process modeling, for modeling 

the logic captured by a single use case or usage scenario, or for modeling the detailed 

logic of a business rule.  Although UML activity diagrams could potentially model the 

internal logic of a complex operation it would be far better to simply rewrite the 

operation so that it is simple enough that you don’t require an activity diagram. In many 

ways UML activity diagrams are the object-oriented equivalent of flow charts and data 

flow diagrams (DFDs) from structured development. 

Let’s start by describing the basic notation : 

 Initial node. The filled in circle is the starting point of the diagram.  An initial 

node isn’t required although it does make it significantly easier to read the 

diagram.  

 Activity final node. The filled circle with a border is the ending point.  An 

activity diagram can have zero or more activity final nodes.  

 Activity.   The rounded rectangles represent activities that occur. An activity may 

be physical, such as Inspect Forms, or electronic, such as Display Create Student 

Screen.  

 Flow/edge.  The arrows on the diagram.  Although there is a subtle difference 

between flows and edges,never a practical purpose for the difference although.   

http://www.agilemodeling.com/essays/umlDiagrams.htm
http://www.agilemodeling.com/artifacts/systemUseCase.htm
http://www.agilemodeling.com/artifacts/businessRule.htm
http://www.agilemodeling.com/artifacts/flowChart.htm
http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm
http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm


                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  59 

 Fork.  A black bar with one flow going into it and several leaving it.  This 

denotes the beginning of parallel activity.  

 Join.  A black bar with several flows entering it and one leaving it.  All flows 

going into the join must reach it before processing may continue.  This denotes 

the end of parallel processing.  

 Condition.  Text such as [Incorrect Form] on a flow, defining a guard which 

must evaluate to true in order to traverse the node.  

 Decision. A diamond with one flow entering and several leaving.  The flows 

leaving include conditions although some modelers will not indicate the 

conditions if it is obvious.   

 Merge.  A diamond with several flows entering and one leaving.  The implication 

is that one or more incoming flows must reach this point until processing 

continues, based on any guards on the outgoing flow.  

 Partition. If figure is organized into three partitions, it is also called swimlanes, 

indicating who/what is performing the activities (either the Applicant, Registrar, 

or System).  

 Sub-activity indicator.  The rake in the bottom corner of an activity, such as in 

the Apply to University activity, indicates that the activity is described by a more 

finely detailed activity diagram.    

 Flow final.  The circle with the X through it.  This indicates that the process stops 

at this point.   

 

GUIDELINES ASSOCIATED FOR DRAWING AN ACTIVITY 
DIAGRAM 
 

1.General Guidelines  

2.Activities  

3.Decision Points  

4.Guards  

5.Parallel Activities  

6.Swimlane Guidelines 

7.Action-Object Guidelines  

  

 

 

http://www.agilemodeling.com/style/#Activities
http://www.agilemodeling.com/style/#DecisionPoints
http://www.agilemodeling.com/style/#Guards
http://www.agilemodeling.com/style/#ParallelActivities


                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  60 

1.        General Guidelines 

Figure1. Modeling a business process with a UML Activity Diagram. 

  

 

 

1. Place The Start Point In The Top-Left Corner.  A start point is modeled with a 

filled in circle, using the same notation that UML State Chart diagrams use.  

Every UML Activity Diagram should have a starting point, and placing it in the 

top-left corner reflects the way that people in Western cultures begin reading.  

Figure1, which models the business process of enrolling in a university, takes this 

approach.  

2. Always Include an Ending Point.  An ending point is modeled with a filled in 

circle with a border around it, using the same notation that UML State Chart 

diagrams use.  Figure1 is interesting because it does not include an end point 

because it describes a continuous process – sometimes the guidelines don’t apply.  

3. Flowcharting Operations Implies the Need to Simplify.  A good rule of thumb is 

that if an operation is so complex you need to develop a UML Activity diagram to 

understand it that you should consider refactoring it.  

   

2.        Activities 

An activity, also known as an activity state, on a UML Activity diagram typically 

represents the invocation of an operation, a step in a business process, or an entire 

business process. 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  61 

1. Question “Black Hole” Activities.  A black hole activity is one that has transitions 

into it but none out, typically indicating that you have either missed one or more 

transitions.   

2. Question “Miracle” Activities.  A miracle activity is one that has transitions out of 

it but none into it, something that should be true only of start points.   

   

3.        Decision Points 

A decision point is modeled as a diamond on a UML Activity diagram. 

1. Decision Points Should Reflect the Previous Activity.  In figure1 we see that there 

is no label on the decision point, unlike traditional flowcharts which would 

include text describing the actual decision being made, we need to imply that the 

decision concerns whether the person was enrolled in the university based on the 

activity that the decision point follows.  The guards, depicted using the format 

[description], on the transitions leaving the decision point also help to describe 

the decision point.  

2. Avoid Superfluous Decision Points.  The Fill Out Enrollment Forms activity in 

FIGURE1 includes an implied decision point, a check to see that the forms are 

filled out properly, which simplified the diagram by avoiding an additional 

diamond.  

   

4.        Guards 

A guard is a condition that must be true in order to traverse a transition. 

1. Each Transition Leaving a Decision Point Must Have a Guard  

2. Guards Should Not Overlap.  For example guards such as x <0, x = 0, and x > 0 

are consistent whereas guard such as x <= 0 and x >= 0 are not consistent because 

they overlap – it isn’t clear what should happen when x is 0.   

3. Guards on Decision Points Must Form a Complete Set.  For example, guards such 

as x < 0 and x >0 are not complete because it isn’t clear what happens when x is 

0.  

4. Exit Transition Guards and Activity Invariants Must Form a Complete Set.  An 

activity invariant is a condition that is always true when your system is processing 

an activity.   

5. Apply a [Otherwise] Guard for “Fall Through” Logic.  

6. Guards Are Optional. It is very common for a transition to not include a guard, 

even when an activity includes several exit transitions.    

   



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  62 

5.        Parallel Activities 

It is possible to show that activities can occur in parallel, as you see in FIGURE 1 

depicted using two parallel bars.  The first bar is called a fork, it has one transition 

entering it and two or more transitions leaving it.  The second bar is a join, with two or 

more transitions entering it and only one leaving it.   

1. A Fork Should Have a Corresponding Join.  In general, for every start (fork) there 

is an end (join).  In UML 2 it is not required to have a join, but it usually makes 

sense.   

2. Forks Have One Entry Transition.   

3. Joins Have One Exit Transition  

4.  Avoid Superfluous Forks.  FIGURE 2 depicts a simplified description of the 

software process of enterprise architectural modeling, a part of the Enterprise 

Unified Process (EUP).  There is significant opportunity for parallelism in this 

process, in fact all of these activities could happen in parallel, but forks were not 

introduced because they would only have cluttered the diagram.  

   

 

6.        Swimlane Guidelines 

A swimlane is a way to group activities performed by the same actor on an activity 

diagram or to group activities in a single thread.  FIGURE 2 includes three swimlanes, 

one for each actor.   

 

 

 

 

 

 

 

 

 

http://www.enterpriseunifiedprocess.com/
http://www.enterpriseunifiedprocess.com/


                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  63 

Figure2. A UML activity diagram for the enterprise architectural modeling 

(simplified). 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  64 

Figure 3. Submitting expenses. 

 

1. Order Swimlanes in a Logical Manner.  

2.  Apply Swim Lanes To Linear Processes.  A good rule of thumb is that swimlanes 

are best applied to linear processes, unlike the one depicted in FIGURE 3.  

3. Have Less Than Five Swimlanes.  

4. Consider Swimareas For Complex Diagrams.  

5.  Swimareas Suggest The Need to Reorganize Into Smaller Activity Diagrams.  

6. Consider Horizontal Swimlanes for Business Processes.  In FIGURE 3 you see 

that the swimlanes are drawn horizontally, going against common convention of 

drawing them vertically.   

  

7 Action-Object Guidelines 

Activities act on objects, In the strict object-oriented sense of the term an action object is 

a system object, a software construct.  In the looser, and much more useful for business 

application modeling, sense of the term an action object is any sort of item.  For example 

in FIGURE 3 the ExpenseForm action object is likely a paper form. 

1. Place Shared Action Objects on Swimlane Separators  

2. When An Object Appears Several Time Apply State Names  

3. State Names Should Reflect the Lifecycle Stage of an Action Object  

4. Show Only Critical Inputs and Outputs  

5. Depict Action Objects As Smaller Than Activities  

 

 

Conclusion: The activity diagram was made successfully by following the steps 

described above. 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  65 

 

 

 

 

 

SAMPLE ACTIVITY DIAGRAMS: 

SAMPLE 1: 

Let us consider the example of attending a course lecture, at 8 am. 

 

 

 

 

An example Activity diagram 

As you can see in Figure , the first activity is to get dressed to leave for the lecture. A 

decision then has to be made, depending on the time available for the lecture to start, and 

the timings of the public trains (metra). If there is sufficient time to catch the train, then 

take the train; else, flag down a cab to the University. The final activity is to actually 

attend the lecture, after which the Activity diagram terminates. 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  66 

 

SAMPLE 2: 

Identifying the activities and transitions for managing 
course information 

The course administrator is responsible for managing course information in the 

Courseware Management System. As part of managing the course information, the 

course administrator carries out the following activities: 

 Check if course exists  

 If course is new, proceed to the "Create Course" step  

 If course exists, check what operation is desired—whether to modify the course or 

remove the course  

 If the modify course operation is selected by the course administrator, the 

"Modify Course" activity is performed  

 If the remove course operation is selected by the course administrator, the 

"Remove Course" activity is performed  

In the first step in this Activity diagram, the system determines whether the course that is 

to be managed is a new course or an existing course. For managing a new course, a 

separate activity, "Create Course," is performed. On the other hand, if a course exists, the 

course administrator can perform two different activities—modify an existing course or 

remove an existing course. Hence, the system checks the type of operation desired based 

on which two separate activities can be performed—"Modify Course" or "Remove 

Course". 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  67 

Activity diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  68 

EXERCISE NO. 7 

 

AIM:  To prepare STATE CHART DIAGRAM for any project. 

 

REQUIREMENTS: 

Hardware Interfaces  

 Pentium(R) 4 CPU 2.26 GHz, 128 MB RAM 

 Screen resolution of at least 800 x 600 required for proper and complete viewing 

of screens. Higher resolution would not be a problem. 

 CD ROM Driver  

Software Interfaces 

 Any window-based operating system(Windows98/2000/XP/NT) 

 IBM Rational Rose Software 

 

THEORY: 

 State Chart Diagrams provide a way to model the various states in which 

an object can exist. 

 There are two special states: the start state and the stop state.  

                  The Start state is represented by a block dot. 

    The Stop state is represented by a bull’s eye. 

 A condition enclosed in square brackets is called a guard                

condition, and controls when a transition can or cannot occur. 

 Process that occur while an object is in certain state are called actions. 

 

 

STEPS TO DRAW STATE CHART DIAGRAM IN RATIONAL ROSE 

SOFTWARE  

 

 To insert new state diagram secondary click on Logical View. 

 Select---New----State chart Diagram. 

 A new diagram will be created, type in a name for the new 

diagram. 

 

 Now double click on the new diagram to open it on the stage. 

 To begin the diagram click on the “START STATE” button. 

 Place a start state icon on the diagram by clicking            the mouse once. 

 

 Now add states to the diagram, these make up the content of                                               

the diagram. Click on the state button. Place the instances for each state into the 

diagram and type in names for them. 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  69 

 Now arrange the states to fill the diagram better. Drag the states to new positions 

to make the easiest layout to work with. 

 

 Add an end state to the diagram by clicking the “END STATE” button. Place an 

instance into the diagram. Now add relationships to the diagram. 

 

 Click on the “STATE TRANSITION” button and drag arrows between the 

appropriate states. 

 

 To edit the specification secondary click on the relation lines and select “OPEN 

SPECIFICATION” button. Add a name for the event in the specification. Then 

click on “apply” and then on “OK” button. 

 Add details to the specifications of the other relationships in the same way. 

 

 There may be instances on the diagram where a state can join more than one state. 

In this case add a relationship in the same way. Then enter the specification for 

the new state. 

 

 

 

 

 

 

 

 

 

 

Conclusion: The state chart diagram was made successfully by following the steps 

described above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  70 

 

 

This is how a state chart diagram is made. 

 

 
 

A STATE CHART DIAGRAM FOR RESERVATION OF TICKETS &           

DISPLAY OF CONFIRMATION FORM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  71 

EXERCISE NO. 8 

Aim: 
 

Steps to draw the Sequence Diagram using Rational Rose. 

 

 

Hardware Requirements: 

 
Pentium 4 processor (2.4 GHz), 128 Mb RAM, Standard keyboard and mouse, colored 

monitor. 

 

 

Software Requirements: 
 

Rational Rose, Windows XP 

 

Theory: 
 
UML sequence diagrams model the flow of logic within the system in a visual manner, 
enabling the user both to document and validate the logic, and are commonly used for 
both analysis and design purposes.  Sequence diagrams are the most popular UML 
artifact for dynamic modeling, which focuses on identifying the behavior within your 
system. Sequence diagrams, along with class diagrams and physical data models are 
the most important design-level models for modern application development. 
 

Sequence diagrams are typically used to model: 

1. Usage scenarios.  A usage scenario is a description of a potential way the system 

is used. The logic of a usage scenario may be part of a use case, perhaps an 

alternate course. It may also be one entire pass through a use case, such as the 

logic described by the basic course of action or a portion of the basic course of 

action, plus one or more alternate scenarios. The logic of a usage scenario may 

also be a pass through the logic contained in several use cases. For example, a 

student enrolls in the university, and then immediately enrolls in three seminars.  

2. The logic of methods.   Sequence diagrams can be used to explore the logic of a 

complex operation, function, or procedure.  One way to think of sequence 

diagrams, particularly highly detailed diagrams, is as visual object code.  

3. The logic of services.  A service is effectively a high-level method, often one that 

can be invoked by a wide variety of clients.  This includes web-services as well as 

business transactions implemented by a variety of technologies such as 

CICS/COBOL or CORBA-compliant object request brokers (ORBs).  

 

http://www.agilemodeling.com/artifacts/classDiagram.htm
http://www.agiledata.org/essays/dataModeling101.html
http://www.agilemodeling.com/artifacts/sequenceDiagram.htm#VisualCoding#VisualCoding


                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  72 

FIG .shows the logic for how to enroll in a seminar.  One should often develop a system-

level sequence diagram to help both visualize and validate the logic of a usage scenario.  

It also helps  to identify significant methods/services, such as checking to see if the 

applicant already exists as a student, which the system must support.  

Figure 3. Enrolling in a seminar (method). 

 

  

The dashed lines hanging from the boxes are called object lifelines, representing the life 

span of the object during the scenario being modeled. The long, thin boxes on the 

lifelines are activation boxes, also called method-invocation boxes, which indicate 

processing is being performed by the target object/class to fulfill a message.   

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  73 

How to Draw Sequence Diagrams 

Sequence diagramming really is visual coding, even when you are modeling a usage 

scenario via a system-level sequence diagram. 

While creating a sequence diagram ,start by identifying the scope of what you are trying 

to model.You should typically tackle small usage scenarios at the system level or a single 

method/service at the detailed object level.   

You should then work through the logic with at least one more person, laying out 

classifiers across the top as you need them. . The heart of the diagram is in the messages, 

which you add to the diagram one at a time as you work through the logic.  You should 

rarely indicate return values, instead you should give messages intelligent names which 

often make it clear what is being returned.   

It is interesting to note that as you sequence diagram you will identify new 

responsibilities for classes and objects, and, sometimes, even new classes.  The 

implication is that you may want to update your class model appropriately, agile 

modelers will follow the practice Create Several Models in Parallel, something that 

CASE tools will do automatically.  Remember, each message sent to a class invokes a 

static method/operation on that class each message sent to an object invokes an operation 

on that object. 

Regarding style issues for sequence diagramming, prefer  drawing messages going from 

left-to-right and return values from right-to-left, although that doesn’t always work with 

complex objects/classes. Justify the label on messages and return values, so they are 

closest to the arrowhead. Also prefer to layer the sequence diagrams: from left-to-right.  

indicate the actors, then the controller class(es), and then the user interface class(es), and, 

finally,  the business class(es). During design, you probably need to add system and 

persistence classes, which you should usually put on the right-most side of sequence 

diagrams. Laying your sequence diagrams in this manner often makes them easier to read 

and also makes it easier to find layering logic problems, such as user interface classes 

directly accessing persistence . 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  74 

Procedure 

 Click on the File menu and select New. 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  75 

 Now from the Dialogue Box that appears ,select the language which you want to 

use for creating your model. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  76 

In the left hand side window of Rational Rose right click on “Use Case view” and 

select New>Sequence Diagram 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  77 

 

 

 

 

 Enter the name of new Sequence file in the space provided,and then click on that 

file name. 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  78 

 

 You can now use the window that appears on right hand side to draw your Sequence 

diagram using the buttons provided on the vertical toolbar. 

    

 

Conclusion: The sequence diagram was made successfully by following the steps 

described above. 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  79 

Another example of a sequence diagram 

 

 : User/BT

AUTHENTIC
ATIOn

SEARCHING SIGNALLING 
MANAGEMENT

DATA 
TRANSFER

MOBILITY 
MANAGEMENT

1: Access_ Request()

2: Authenticity_check()

3: Access_Granted()

4: Device_Search()

5: Range_Check()

6: Frequency_Selection()

7: Signalling_Complete()

8: Results()

9: Send_Data()
10: Transmitting()

11: Acknowldegement()

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  80 

EXERCISE NO. 9 

 

 

Aim: 
 

Steps to draw the collaboration Diagram using Rational Rose. 

 

 

Hardware Requirements: 

 
Pentium 4 processor (2.4 GHz), 128 Mb RAM, Standard keyboard and mouse, colored 

monitor. 

 

 

Software Requirements: 
 

Rational Rose, Windows XP 

THEORY 

Collaboration diagrams are also relatively easy to draw.  They show the relationship 

between objects and the order of messages passed between them.  The objects are listed 

as icons and arrows indicate the messages being passed between them. The numbers next 

to the messages are called sequence numbers.  As the name suggests, they show the 

sequence of the messages as they are passed between the objects.  There are many 

acceptable sequence numbering schemes in UML.  A simple 1, 2, 3... format can be used, 

as the example below shows, or for more detailed and complex diagrams a 1, 1.1 ,1.2, 

1.2.1... scheme can be used.    

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  81 

The example below shows a simple collaboration diagram for the placing an order use 

case.  This time the names of the objects appear after the colon, such as :Order Entry 

Window following the objectName:className naming convention. This time the class 

name is shown to demonstrate that all of objects of that class will behave the same way. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  82 

EXERCISE NO. 10 

 

 

AIM:  To draw class diagram  for any project. 

REQUIREMENTS: 

Hardware Interfaces  

 Pentium(R) 4 CPU 2.26 GHz, 128 MB RAM 

 Screen resolution of at least 800 x 600 required for proper and complete viewing 

of screens. Higher resolution would not be a problem. 

 CD ROM Driver  

Software Interfaces 

 Any window-based operating system(Windows98/2000/XP/NT) 

 IBM Rational Rose Software 

 

THEORY: 

A class diagram is a type of static structure diagram that describes the structure of a 

system by showing the system's classes, their attributes, and the relationships between the 

classes. 

Class diagrams show the classes of the system, their inter-relationships, and the 

operations and attributes of the classes.  Class diagrams are typically used, although not 

all at once, to: 

 

 Explore domain concepts in the form of a domain model  

 Analyze requirements in the form of a conceptual/analysis model  

 Depict the detailed design of object-oriented or object-based software  

A class model is comprised of one or more class diagrams and the supporting 

specifications that describe model elements including classes, relationships between 

classes, and interfaces. There are guidelines  

1. General issues 

2.  Classes  

3. Interfaces  

http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://en.wikipedia.org/wiki/Object-oriented_programming
http://www.agilemodeling.com/artifacts/classDiagram.htm
http://www.agilemodeling.com/style/classDiagram.htm#General#General
http://www.agilemodeling.com/style/classDiagram.htm#ClassGuidelines#ClassGuidelines
http://www.agilemodeling.com/style/classDiagram.htm#Interfaces#Interfaces


                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  83 

4. Relationships  

5. Inheritance  

6. Aggregation and Composition  

 

         GENERAL GUIDELINES 

Because class diagrams are used for a variety of purposes – from understanding 

requirements to describing your detailed design – it is needed to apply a different style in 

each circumstance.  This section describes style guidelines pertaining to different types of 

class diagrams. 

 CLASSES 

A class in the software system is represented by a box with the name of the class written 

inside it. A compartment below the class name can show the class's attributes (i.e. its 

properties). Each attribute is shown with at least its name, and optionally with its type, 

initial value, and other properties. 

 

A class is effectively a template from which objects are created (instantiated).  Classes 

define attributes, information that is pertinent to their instances, and operations, 

functionality that the objects support.  Classes will also realize interfaces (more on this 

later). 

Class diagrams are widely used to describe the types of objects in a system and their 

relationships.  Class diagrams model class structure and contents using design elements 

such as classes, packages and objects.  Class diagrams describe three different 

perspectives when designing a system, conceptual, specification, and implementation.  

These perspectives become evident as the diagram is created and help solidify the 

design.   

 INTERFACES 

An interface is a collection of operation signature and/or attribute definitions that ideally 

defines a cohesive set of behaviors. Interface a class or component must implement the 

operations and attributes defined by the interface.  Any given class or component may 

implement zero or more interfaces and one or more classes or components can implement 

the same interface. 

 

http://www.agilemodeling.com/style/classDiagram.htm#RelationshipGuidelines#RelationshipGuidelines
http://www.agilemodeling.com/style/classDiagram.htm#Inheritance#Inheritance
http://www.agilemodeling.com/style/classDiagram.htm#AggregationComposition#AggregationComposition
http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://www.agilemodeling.com/style/interface.htm


                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  84 

 

RELATIONSHIPS 

 

 

A relationship is a general term covering the specific types of logical connections found 

on a class and object diagram. 

Class diagrams also display relationships such as containment, inheritance, associations 

and others.   

The association relationship is the most common relationship in a class diagram.  The 

association shows the relationship between instances of classes.   

Another common relationship in class diagrams is a generalization.  A generalization is 

used when two classes are similar, but have some differences.   

AGGREGATION 

Aggregation is a variant of the "has a" or association relationship; composition is more 

specific than aggregation. 

Aggregation occurs when a class is a collection or container of other classes, but where 

the contained classes do not have a strong life cycle dependency on the container--

essentially, if the container is destroyed, its contents are not. 

 
ASSOCIATION 

Association are semantic connection between classes. When an association connects two 

classes , each class can send messages to other in a sequence or a collaboration diagram . 

Associations can be bidirectional or unidirectional.  

                                         

http://en.wikipedia.org/wiki/Aggregation_%28object-oriented_programming%29


                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  85 

 

 

 

 
DEPENDENCIES 

Dependencies connect two clases . Dependencies are always unidirectional and show that 

one class, depends on the definitions in another class . 

                                               

 

GENERALIZATION 

The generalization relationship indicates that one of the two related classes (the 

supertype) is considered to be a more general form of the other (the subtype). In practice, 

this means that any instance of the subtype is also an instance of the supertype . 

The generalization relationship is also known as the inheritance or "is a" relationship. 

The supertype in the generalization relationship is also known as the "parent", 

superclass, base class, or base type. 

The subtype in the generalization relationship is also known as the "child", subclass, 

derived class, derived type, inheriting class, or inheriting type. 

 

 

 

MULTIPLICITY 

The association relationship indicates that (at least) one of the two related classes makes 

reference to the other.  

 

 

http://en.wikipedia.org/wiki/Inheritance_%28computer_science%29
http://en.wikipedia.org/wiki/Supertype
http://en.wikipedia.org/wiki/Subtype


                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  86 

 

HOW TO DRAW CLASS DIAGRAM  

When designing classes the attributes and operations it will have are observed.  Then 

determining how instances of the classes will interact with each other. These are the very 

first steps of many in developing a class diagram.  However, using just these basic 

techniques one can develop a complete view of the software system. There are various 

steps in the analysis and design of  an object oriented system. 

 

 
STEPS FOR ANALYSIS AND DESIGN 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  87 

 

 

STEPS FOR DRAWING CLASS DIAGRAM  
 

1. After completing the sequence diagrams and collaboration 

diagram which are a part of the interaction diagrams. In 

Rational Rose, right click on the “Use Case View”  and select 

new  class diagram. 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  88 

2. Enter the class name (here “Hostel Class”). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  89 

3. Click the cursor on the block representing class from the table of 

predefined  symbols into the screen 

 
 

    

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  90 

4. Select a new Class 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  91 

1. Double click on the class formed to enter the class name in the general 

field . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  92 

2. In the operation field right click and select the inset option to add class 

operations or functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  93 

3. Input the name of the new operation , its return type in the respective 

columns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  94 

7. In the attribute field, enter the attribute names , their type and the parent 

class in the respective columns. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  95 

8. Enter all the attributes and operations , and press “OK” button to get the required 

class. 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  96 

9. While building the classes of the system if you want to make nested class in 

some main class(here “LOGIN” class), then insert classes in the ‘Nested’ field of 

class specification(like the “EDIT_RECORD” class) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  97 

10.  Select the nested class and drag it to the Class diagram window 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  98 

11.  All the required classes were built completely with there operations, attributes 

and nested classes , into the class diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  99 

12. Now we want to show the relationships between the various classes. To 

show an ASSOCIATION relation select a block named ‘association’  from 

the blocks to the left and draw the arrows between the requisite classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  100 

13. To show a GENERALIZATION or inheritance relation select a block named 

‘generalization’  from the blocks to the left and draw the arrows between the 

requisite classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  101 

14. Select the ‘text box’ block from the blocks field to describe any relation with the 

help of text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  102 

15. Enter text by placing text boxes over the various  relationship arrows 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  103 

 

 

 

 

 

 

 



                                                                                                                 Laboratory Manual  

Object Oriented Software Engineering  104 

 

MARKING SCHEME 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


