
 

 

 

LAB MANUAL OF 

ALGORITHM ANALYSIS AND DESIGN LAB 

ETCS-254 
 

 

 

 

 

 

 

  

 

Maharaja Agrasen Institute of Technology,  

PSP area, Sector – 22, Rohini, New Delhi – 110085 

( Affiliated to Guru Gobind Singh Indraprastha University, 

Dwarka, New Delhi ) 

 

 

 



 

INDEX OF THE CONTENTS 

1. Introduction to the Algorithm Analysis and Design. 

2. Platform used in the Lab.  

3. Hardware available in the lab. 

4. List of  practicals  ( as per syllabus prescribed by G.G.S.I.P.U) 

(Practicals are divided into seven  sections.)  

5. Format of the lab record to be prepared by the students. 

6. Marking scheme for the practical exam. 

7. Steps to be followed (for each practical). 

8. Sample programs. 

9. List of viva questions. 

10. List of advanced practicals. 

11. Steps to be followed for advanced practicals. 



 

INTRODUCTION TO ALGORITHM ANALYSIS AND DESIGN 

LAB 

An algorithm, named after the ninth century scholar Abu Jafar Muhammad Ibn Musu 

Al-Khowarizmi, An algorithm is a set of rules for carrying out calculation either by 

hand or on a machine.  

1. Algorithmic is a branch of computer science that consists of designing and 

analyzing computer algorithms The “design” pertain to  

i. The description of algorithm at an abstract level by means of a pseudo 

language, and  

ii. Proof of correctness that is, the algorithm solves the given problem in all 

cases.  

2. The “analysis” deals with performance evaluation (complexity analysis).  

The complexity of an algorithm is a function g(n) that gives the upper bound of the 

number of operation (or running time) performed by an algorithm when the input size 

is n. 

 

There are two interpretations of upper bound. 

 

Worst-case Complexity 
The running time for any given size input will be lower than the upper bound 

except possibly for some values of the input where the maximum is reached. 

Average-case Complexity  

The running time for any given size input will be the average number of 

operations over all problem instances for a given size.  

An algorithm has to solve a problem. An algorithmic problem is specified by 

describing the set of instances it must work on and what desired properties the output 

must have.   

We need some way to express the sequence of steps comprising an algorithm. In order 

of increasing precision, we have English, pseudocode, and real programming 



languages. Unfortunately, ease of expression moves in the reverse order. In the manual 

to describe the ideas of an algorithm  pseudocodes, algorithms and functios are used.    

In the algorithm analysis and design lab various stratgies such as Divide and conquer 

techinque , greedy technique and dynamic programming techniques are done. Many 

sorting algorithms are implemented to analyze the time complexities.String matching 

algorithms, graphs and spanning tree algorithms are implemented so as to able to 

understand the applications of  various design stratgies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PLATFORM USED IN THE LAB 

 

Linux (also known as GNU/Linux) is a Unix-like computer operating system. It is one 

of the most prominent examples of open source development and free software; its 

underlying source code is available for anyone to use, modify, and redistribute freely. 

SIMPLE LINUX COMMANDS 

init Allows  to change the server boot up on a specific run level 

Most common use: init 5 

This is a useful command, when for instance a servers fails to identify 

video type, and ends up dropping to the non-graphical boot-up mode 

(also called runlevel 3). 

 

The server runlevels rely on scripts to basically start up a server with 

specific processes and tools upon bootup. Runlevel 5 is the default 

graphical runlevel for Linux servers. But sometimes you get stuck in a 

different mode and need to force a level. For those rare cases, the init 

command is a simple way to force the mode without having to edit the 

inittab file. 
 

cd  This command is used to change the directory and using this command will change 

the location to what ever directory is specified  

cd hello  

will change to the directory named hello located inside the current directory  

cd /home/games  

will change to the directory called games within the home directory.  

Any directory can be specified on the Linux system and change to that directory 

from any other directory. There are of course a variety of switches associated with 

the cd command but generally it is used pretty much as it is.  
 

 

Rm  removes /deletes directories and files  

          Most common use: rm -r name (replace name of the file or directory ) 

    The -r option forces the command to also apply to each subdirectory         within 

the directory. For instance to delete the entire contents of the directory x which 

includes directories y and z this command will do it in one quick process. That is 



much more useful than trying to use the rmdir command after deleting files! 

Instead use of rm -r command will save time and effort.  

cp  The cp command copies files. A file can be copied in the current directory or can 

be copied to another directory.  

cp myfile.html /home/help/mynewname.html  
This will copy the file called myfile.html in the current directory to the directory 

/home/help/ and call it mynewname.html.  

Simply put the cp command has the format of  

cp file1 file2 With file1 being the name (including the path if needed) of the file 

being copied and file2 is the name (including the path if needed) of the new file 

being created.  

The cp command the original file remains in place.  

 

dir The dir command is similar to the ls command only with less available switches 

(only about 50 compared to about 80 for ls). By using the dir command a list of the 

contents in the current directory listed in columns can be seen.  

Type man dir to see more about the dir command.  

 

find  The find command is used to find files and or folders within a Linux system.  

To find a file using the find command   

find /usr/bin -name filename  
can be typed. This will search inside the /usr/bin directory (and any sub 

directories within the /usr/bin directory) for the file named filename. To search 

the entire filing system including any mounted drives the command used is  

find / -name filename  
and the find command will search every file system beginning in the root 

directory.  

The find command can also be used to find command to find files by date and the 

find command happily understand wild characters such as * and ?  

 

ls  The ls command lists the contents of a directory. In its simple form typing just ls at 

the command prompt will give a listing for the directory currently in use. The ls 

command can also give listings of other directories without having to go to those 

directories for example typing ls /dev/bin will display the listing for the directory 



/dev/bin . The ls command can also be used to list specific files by typing ls 

filename this will display the file filename (of course you can use any file name 

here). The ls command can also handle wild characters such as the * and ? . For 

example ls a* will list all files starting with lower case a ls [aA]* will list files 

starting with either lower or upper case a (a or A remember linux is case sensitive) 

or ls a? will list all two character file names beginning with lower case a . There 

are many switches (over 70) associated with the ls command that perform specific 

functions. Some of the more common switches are listed here.  

 ls -a This will list all file including those beginning with the'.' that would 

normally be hidden from view.  

 ls -l This gives a long listing showing file attributes and file permissions.  

 ls -s Will display the listing showing the size of each file rounded up to the 

nearest kilobyte.  

 ls -S This will list the files according to file size.  

 ls -C Gives the listing display in columns.  

 ls -F Gives a symbol next to each file in the listing showing the file type. The / 

means it is a directory, the * means an executable file, the @ means a symbolic 

link.  

 ls -r Gives the listing in reverse order.  

 ls -R This gives a recursive listing of all directories below that where the 

command was issued.  

 ls -t Lists the directory according to time stamps.  

Switches can be combined to produce any output desired.  

e.g. 

ls -la  
This will list all the files in long format showing full file details.  

mkdir The mkdir command is used to create a new directory.  

   mkdir mydir  
  This will make a directory (actually a sub directory) within the current directory 

called mydir.  

  

mv  The mv command moves files from one location to another. With the mv 

command the file will be moved and no longer exist in its former location prior to 



the mv. The mv command can also be used to rename files. The files can be 

moved within the current directory or another directory.  

cp myfile.html /home/help/mynewname.html  
This will move the file called myfile.html in the current directory to the directory 

/home/help/ and call it mynewname.html.  

The mv command has the format of  

mv file1 file2 

       With file1 being the name (including the path if needed) of the file being moved 

and file2 is the name (including the path if needed) of the new file being created.  

 

rm  The  rm command is used to delete files. Some very powerful switches     can be 

used with the rm command.To check the man rm file before placing extra switches 

on the rm command.  

rm myfile  

This will delete the file called mydir. To delete a file in another directory for 

example rm /home/hello/goodbye.htm will delete the file named goodbye.htm in 

the directory /home/hello/.  

Some of the common switches for the rm command are  

6. rm -i  this operates the rm command in interactive mode meaning it  prompts 

before deleting a file. This gives a second chance to say no do not delete the file 

or yes delete the file. Linux is merciless and once something is deleted it is gone 

for good so the -i flag (switch) is a good one to get into the habit of using.  

7. rm –f  will force bypassing any safeguards that may be in place such as 

prompting. Again this command is handy to know but care should be taken with 

its use.  

8. rm -r  will delete every file and sub directory below that in which the command 

was given. This command has to be used with care as no prompt will be given 

in most linux systems and it will mean instant good bye to your files if misused.  

 

rmdir  The rmdir command is used to delete a directory.  

rmdir mydir  
This will delete the directory (actually a sub directory) called mydir.  



 

How to Write, Compile and Run a Simple C  

Program On Linux System 
 

1.At the command line, pick a directory to save program and 

enter: 

 

vi firstprog.c 

Note 

All C source code files must have a .c file extension. 

All C++ source code files must have .cpp file extension. 

 

2.Enter the following program: 

 
#include <stdio.h> 

 

int main() 

 

{ 

 

  int index; 

 

  for (index = 0; index < 7; index = index + 1) 

 

    printf ("Hello World!\n"); 

 

  return 0; 

 

} 



 
 

3. Press Ctrl+O to save the file and Ctrl+X to exit. 

 

4. Enter: 

gcc -o myprog firstprog.c 

...to create an executable called myprog from your source code 

(firstprog.c). 

Here's a detailed discussion of the line above: 

gcc (GNU C Compiler) is passed...  

...-o which means give the executable the name that follows (i.e. 

myprog)...  

...and the program to compile (referred to as the "source code") is 

firstprog.c.  

 

5.To run the program, enter: 

./myprog 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

HARDWARE AVAILABLE IN THE LAB 

 
CPU           HCL {Intel CPU (P-IV 3.0GHz.HT) 

                    512 MB RAM/ 

                    80 GB HDD/ 

                    Intel 865 GLC M.B. 

                    On Board sound & 3D Graphics Card 

                    Lan card key board 

 Mouse 

 CDRW Drive  

 15’’ Color Monitor  

 UPS 

 

Printer        Dot Matrix Printer , 1 LaserJet Printer1160 

 

Software    C++ ,Linux 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LIST OF PRACTICALS(AS PER GGSIP UNIVERSITY SYLLABUS 

) 
Laboratory Name: Algorithm Analysis And Design   

Course Code : ETCS 254 

 

SORTING ALGORITHMS: 

 

1. To Analyze time complexity of Insertion sort. 

2. To Analyze time complexity of Quick sort. 

3. To Analyze time complexity of Merge sort. 
 

DYNAMIC PROGRAMMING: 

 

4. To Implement Largest Common Subsequence. 

5. To Implement Optimal Binary Search Tree. 

6. To Implement Matrix Chain Multiplication. 
 

DIVIDE AND CONQUER TECHNIQUE: 

 

7. To Implement Strassen’s matrix multiplication Algorithm. 

 
GREEDY ALGORITHM’S: 

 

8. To implement Knapsack Problem. 

9. To implement Activity Selection Problem. 
 

GRAPHS: 

 

10. To implement Dijkstra’s Algorithm. 

11. To implement Warshall’s Algorithm. 

12. To implement Bellman Ford’s  Algorithm. 

13. To implement Depth First Search Algorithm. 

14. To implement Breadth First Search Algorithm. 

 
STRING MATCHING ALGORITHMS: 

 

15. To implement Naïve String Matching Algorithm. 

16. To implement Rabin Karp String Matching Algorithm  
 



 

 

SPANNING TREES: 

 

17. To implement Prim’s Algorithm. 

18. To implement Kruskal’s Algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

FORMAT OF THE LAB RECORDS TO BE PREPARED BY THE 

STUDENTS 

 

The students are required to maintain the lab records as per the instructions: 

 

1. All the record files should have  a cover page as per the format.  

2. All the record files should have an index as per the format. 

3. All  the records should have the following : 

 

I. Date 

II. Aim 

III. Algorithm Or The  Procedure to be followed. 

IV. Program 

V. Output 

VI. Viva questions after each section of programs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MARKING SCHEME 

FOR THE 

PRACTICAL EXAMINATION 

 
There will be two practical exams in each semester.  

 

 Internal Practical Exam  

 External Practical Exam 

 

 

INTERNAL PRACTICAL EXAMINATION 

 

It is taken by the concerned lecturer of the batch.  

 

MARKING SCHEME FOR INTERNAL EXAM IS: 

 

Total Marks:      40 

 

Division of 40 marks is as follows  

 

1. Regularity:     25  

 

 Performing program in each turn of the lab 

 Attendance of the lab 

 File 

 

2. Viva Voice:     10 

 

3. Presentation:    5 

 

 

NOTE :For the regularity, marks are awarded to the student out of 10 for each 

experiment performed in the lab and at the end the average marks are given out 

of 25.  

 

 



EXTERNAL PRACTICAL EXAMINATION 

 

It is taken by the concerned lecturer of the batch and by an external examiner. In 

this exam student needs to perform the experiment allotted at the time of the 

examination, a sheet will be given to the student in which some details asked by the 

examiner needs to be written and at the last viva will be taken by the external 

examiner. 

 

MARKING SCHEME FOR THIS EXAM IS: 

 

Total Marks:       60 

 

Division of 60 marks is as follows  

 

1. Sheet filled by the student:   15  

 

2. Viva Voice:      20 

 

3. Experiment performance:    15 

 

4. File submitted:     10 

 

 

 

NOTE:   
 

 Internal marks + External marks = Total marks given to the students  

     (40 marks)    (60 marks)              (100 marks) 

 

 Experiments given to perform can be from any section of the lab. 

 

 

  

 

 



 

STEPS TO BE TAKEN IMPLEMENT PROGRAMMS IN 

ALGORITHM ANALYSIS AND DESIGN 

The programms to be done in the lab are divided in seven sections. 

The first section is about complexities of various sorting algorithms. Best, Average 

and Worst case coplexities of insertion ,quick and merge sort techniques are compared 

by plotting graph for varing input sizes and time required by the particular algorithm. 

The second section is about dynamic progarmming technique.Dynamic programming 

solves problems by combining the solution of sub problems. It is only applicable when 

sub problems are not independent, that is, they share sub sub-Problems. Each time a 

new sub problem is solved, its solution is stored such that other sub problems sharing 

the stored sub problem can use the stored value instead of doing a recalculation, 

thereby saving work compared to applying the divide-and-conquer principle on the 

same problem which would have recalculated everything. 

  

The third section is about divide and conquer technique. To use divide and conquer as 

an algorithm design technique,the problem must be divided into two smaller 

subproblems, solve each of them recursively, and then meld the two partial solutions 

into one solution to the full problem. Whenever the merging takes less time than 

solving the two subproblems, we get an efficient algorithm. Mergesort is the classic 

example of a divide-and-conquer algorithm. It takes only linear time to merge two 

sorted lists of n/2 elements each of which was obtained in time. Divide and 

conquer is a design technique with many important algorithms to its credit, including 

mergesort, the fast Fourier transform, and Strassen's matrix multiplication algorithm. 

The fourth section is about Greedy strategy of designing algorithms. In greedy strategy 

algorithm always takes the best immediate, or local, solution while finding an answer. 

Greedy algorithms find the overall, or globally, optimal solution for some optimization 

problems, but may find less-than-optimal solutions for some instances of other 

problems. 

http://www.nist.gov/dads/HTML/optimalsoltn.html
http://www.nist.gov/dads/HTML/optimization.html
http://www.nist.gov/dads/HTML/optimization.html


The fifth section is related to graphs. A graph is a kind of data structure , that consists 

of a set of nodes and a set of edges that establish relationships (connections) between 

the nodes. 

The sixth section is about string matching algorithms .The problem of string matching 

is a prevalent and important problem in computer science today. The problem is to 

search for a pattern string, pat[1..m], in a text string txt[1..n]. Usually n>>m, and txt 

might be very long indeed, although this is not necessarily so.  

The seventh section is about spanning tree. One application of spanning tree could be a 

cable TV company laying cable to a new neighborhood. If it is constrained to bury the 

cable only along certain paths, then there would be a graph representing which points 

are connected by those paths. Some of those paths might be more expensive, because 

they are longer, or require the cable to be buried deeper; these paths would be 

represented by edges with larger weights. A spanning tree for that graph would be a 

subset of those paths that has no cycles but still connects to every house. A minimum 

spanning tree or minimum weight spanning tree is a spanning tree with weight less 

than or equal to the weight of every other spanning tree. More generally, any 

undirected graph has a minimum spanning forest.   

 

 

 

 

 

 

 

 

 

 



 

SECTION I 
 

 

ANALSIS OF  

SORTING TECHNIQUES 
 

 

 

 

 
 

 

 

 

 

 



ANALYSIS OF SORTING ALGORITHMS 

Best, Worst, and Average-Case 
 

The worst case complexity of the algorithm is the function defined by the maximum 

number of steps taken on any instance of size n.    

 

 
The best case complexity of the algorithm is the function defined by the minimum 

number of steps taken on any instance of size n.   

  

The average-case complexity of the algorithm is the function defined by an average 

number of steps taken on any instance of size n.    

Each of these complexities defines a numerical function - time vs. size. 

 

 

 

 

 

 

 

 

 

 

 

 



INSERTION SORT  

 

Insertion sort is a simple sorting algorithm that is relatively efficient for small lists and 

mostly-sorted lists, and often is used as part of more sophisticated algorithms. It works 

by taking elements from the list one by one and inserting them in their correct position 

into  new sorted list. In arrays, the new list and the remaining elements can share the 

array's space, but insertion is expensive, requiring shifting all following elements over 

by one. The insertion sort works just like its name suggests - it inserts each item into 

its proper place in the final list. The simplest implementation of this requires two list 

structures - the source list and the list into which sorted items are inserted. To save 

memory, most implementations use an in-place sort that works by moving the current 

item past the already sorted items and repeatedly swapping it with the preceding item 

until it is in place. Shell sort  a variant of insertion sort that is more efficient for larger 

lists. 

 

Analysis of Insertion Sort 

 

Count the number of times each line of pseudocode will be executed.  

 

Line  InsertionSort(A)  #Inst.  #Exec. 

1  for j:=2 to len. of A do  c1  n 

2  key:=A[j]  c2  n-1 

3  /* put A[j] into A[1..j-1] */  c3=0  /  

4  i:=j-1  c4  n-1 

5  while do  c5  tj 

6  A[i+1]:= A[i]  c6   

7  i := i-1  c7   

8  A[i+1]:=key  c8  n-1 

 

The for statement is executed (n-1)+1 times. 

  

Within the for statement, "key:=A[j]" is executed n-1 times.  

 

Steps 5, 6, 7 are harder to count.  



Let the number of elements that have to be slide right to insert the jth item.  

Step 5 is executed times.  

Step 6 is .  

Add up the executed instructions for all pseudocode lines to get the run-time of the 

algorithm:  

 
What are the ? They depend on the particular input.  

 

Best Case 

 

If it's already sorted, all 's are 1.  

Hence, the best case time is  

 

 
where C and D are constants.  

 

Worst Case 

If the input is sorted in descending order, we will have to slide all of the already-sorted 

elements, so , and step 5 is executed  

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 



MERGE SORT 
 

Merge sort takes advantage of the ease of merging already sorted lists into a new 

sorted list. It starts by comparing every two elements (i.e. 1 with 2, then 3 with 4...) 

and swapping them if the first should come after the second. It then merges each of the 

resulting lists of two into lists of four, then merges those lists of four, and so on; until 

at last two lists are merged into the final sorted list. Of the algorithms described here, 

this is the first that scales well to very large lists. 

 

Merge sort works as follows: 

 

1. Divide the unsorted list into two sub lists of about half the size  

2. Sort each of the two sub lists  

3. Merge the two sorted sub lists back into one sorted list. 

  

Pseudocode for mergesort  

 

 mergesort(m) 

    var list left, right 

    if length(m) ≤ 1 

        return m 

    else 

        middle = length(m) / 2 

        for each x in m up to middle 

            add x to left 

        for each x in m after middle 

            add x to right 

        left = mergesort(left) 

        right = mergesort(right) 

        result = merge(left, right) 

        return result 

 

 

 

 

 

 



 

 

There are several variants for the merge() function, the simplest variant could look like 

this: 

 

Pseudocode for merge 

 

 merge(left,right) 

    var list result 

    while length(left) > 0 and length(right) > 0 

        if first(left) ≤ first(right) 

            append first(left) to result 

            left = rest(left) 

        else 

            append first(right) to result 

            right = rest(right) 

    if length(left) > 0  

        append left to result 

    if length(right) > 0  

        append right to result 

    return result 

 

 

ANALYSIS 

The straightforward version of function merge requires at most 2n steps (n steps for 

copying the sequence to the intermediate array b, and at most n steps for copying it 

back to array a). The time complexity of mergesort is therefore  

T(n)  2n + 2 T(n/2)   and  

T(1)  =  0  

The solution of this recursion yields  

T(n)  2n log(n)    O(n log(n))  



Thus, the Mergesort algorithm is optimal, since the lower bound for the sorting 

problem of Ω(n log(n)) is attained.  

In the more efficient variant, function merge requires at most 1.5n steps (n/2 steps for 

copying the first half of the sequence to the intermediate array b, n/2 steps for copying 

it back to array a, and at most n/2 steps for processing the second half). This yields a 

running time of mergesort of at most 1.5n log(n) steps. Algorithm Mergesort has a 

time complexity of Θ(n log(n)) which is optimal.  

A drawback of Mergesort is that it needs an additional space of Θ(n) for the temporary 

array b.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

MERGE SORT TREE 

 

 

 

 
 

 

 

 

 



QUICK SORT  
 

Quicksort is a divide and conquer algorithm which relies on a partition operation: to 

partition an array,an element, called a pivot is choosen,all smaller elements are moved 

before the pivot, and all greater elements are moved after it. This can be done 

efficiently in linear time and in-place. Then recursively sorting can be done for the 

lesser and greater sublists. Efficient implementations of quicksort (with in-place 

partitioning) are typically unstable sorts and somewhat complex, but are among the 

fastest sorting algorithms in practice. Together with its modest O(log n) space usage, 

this makes quicksort one of the most popular sorting algorithms, available in many 

standard libraries. The most complex issue in quicksort is choosing a good pivot 

element; consistently poor choices of pivots can result in drastically slower (O(n2)) 

performance, but if at each step we choose the median as the pivot then it works in 

O(n log n). 

Quicksort sorts by employing a divide and conquer strategy to divide a list into two 

sub-lists. 

 

Pick an element, called a pivot, from the list.  

Reorder the list so that all elements which are less than  pivot come before the pivot 

and so that all elements greater than the pivot come after it (equal values can go either 

way). After this partitioning, the pivot is in its final position. This is called the 

partition operation.  

 

Recursively sort the sub-list of lesser elements and the sub-list of greater elements.  

 

Pseudocode For partition(a, left, right, pivotIndex) 

 

     pivotValue := a[pivotIndex] 

     swap(a[pivotIndex], a[right]) // Move pivot to end 

     storeIndex := left 

     for i from left to right-1 

         if a[i] ≤ pivotValue 

             swap(a[storeIndex], a[i]) 

             storeIndex := storeIndex + 1 

     swap(a[right], a[storeIndex]) // Move pivot to its final place 

     return storeIndex 

 



 

 

Pseudocode For quicksort(a, left, right) 

 

     if right > left 

         select a pivot value a[pivotIndex] 

         pivotNewIndex := partition(a, left, right, pivotIndex) 

         quicksort(a, left, pivotNewIndex-1) 

         quicksort(a, pivotNewIndex+1, right) 

 

 

 

ANALYSIS 

The partition routine examines every item in the array at most once, so complexity is 

clearly O(n).  

Usually, the partition routine will divide the problem into two roughly equal sized 

partitions. We know that we can divide n items in half log2n times.  

 

This makes quicksort a O(nlogn) algorithm - equivalent to heapsort.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
 

 

 

 

 



 

 

 

SECTION II 
 

 

DYNAMIC PROGRAMING 

TECHNIQUE 
 

 

 

 

 
 



DYNAMIC PROGRAMMING 

Dynamic Programming is a technique for computing recurrence relations efficiently 

by sorting partial results. Dynamic programming is a technique for efficiently 

computing recurrences by storing partial results.  

Once dynamic programming is understood, it is usually easier to reinvent certain 

algorithms . A dynamic programming solution has three components:   

1. Formulate the answer as a recurrence relation or recursive algorithm.  

2. Show that the number of different instances of your recurrence is bounded by a 

polynomial.  

3. Specify an order of evaluation for the recurrence so you always have what you 

need.  

 

 

 

 

 

 

 

 

 

 

 

 



LONGEST COMMON SUBSEQUENCE PROBLEM 

 

The longest common subsequence problem (LCS) is finding a longest sequence 

which is a subsequence of all sequences in a set of sequences (often just two). The 

problem is sometimes defined to be finding all longest common subsequences. 

It should not be confused with the longest common substring problem (a substring is 

necessarily a contiguous part). 

Solution for two sequences 

Given the sequences and  

 
 

Here + denotes concatenation, and max' gives the longest sequence. 

Since this problem has an optimal substructure property, it can be solved by dynamic 

programming. 

The rationale for this recurrence is that, if the last character of two sequences are 

equal, they must be part of the LCS. A larger LCS can never be obtained by matching 

xm to yj where j < n, and vice versa. To find all the longest common subsequences, the 

LCS should be denoted as a set of sequences, and 'max should return both solutions if 

they are equally long. 

 

 

 

 

 

 

 

 

 



COMPUTING THE LENGTH OF THE LCS 

The below function takes as input sequences X[1..m] and Y[1..n] computes the LCS 

between X[1..i] and Y[1..j] for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, and stores it in C[i,j]. 

C[m,n] will contain the length of the LCS of X and Y. 

 

function  LCS(X[1..m], Y[1..n]) 

    C = array(0..m, 0..n) 

    for i := 1..m 

        for j := 1..n 

            if X[i] = Y[j] 

                C[i,j] := C[i-1,j-1] + 1 

            else: 

                C[i,j] := max(C[i,j-1], C[i-1,j]) 

    return C 

 

The following function backtracks the choices taken when computing the C table. If 

the last characters in the prefixes are equal, they must be in an LCS. If not, check what 

gave the largest LCS of keeping xi and yj, and make the same choice. Just choose one 

if they were equally long.  

Call the function with i=m and j=n. 

function backTrack(C[0..m,0..n], X[1..m], Y[1..n], i, j) 

    if i = 0 or j = 0 

        return "" 

    else if  X[i] = Y[j] 

        return backTrack(C, X, Y, i-1, j-1) + X[i] 

    else 
        if C[i,j-1] > C[i-1,j] 

            return backTrack(C, X, Y, i, j-1) 

        else 
            return backTrack(C, X, Y, i-1, j) 

 

If choosing xi and yj would give an equally long result, both resulting subsequences 

should be shown. This is returned as a set by this function. Notice that this function is 

not polynominal, as it might branch in almost every step if the strings are similar. 

 

 



 

 

function backTrackAll(C[0..m,0..n], X[1..m], Y[1..n], i, j) 

    if i = 0 or j = 0 

        return {} 

    else if X[i] = Y[j]: 

        return {Z + X[i-1] for all Z in backTrackAll(C, X, Y, i-1, j-1)} 

    else: 

        R := {} 

        if C[i,j-1] ≥ C[i-1,j]: 

            R := R ∪  backTrackAll(C, X, Y, i, j-1) 

        if C[i-1,j] ≥ C[i,j-1]: 

            R := R ∪  backTrackAll(C, X, Y, i-1, j) 

        return R 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

OPTIMAL BINARY SEARCH TREES 

A binary search tree is a tree where the key values are stored in the internal nodes, the 

external nodes (leaves) are null nodes, and the keys are ordered lexicographically.i.e. 

for each internal node all the keys in the left subtree are less than the keys in the node, 

and all the keys in the right subtree are greater.  

When we know the probabilities of searching each one of the keys, it is quite easy to 

compute the expected cost of accessing the tree. An OBST is a BST which has 

minimal expected cost.  

 

Example:  

Key -5 1 8 7 13 21 

Probabilities 1/8 1/32 1/16 1/32 1/4 1/2 

 
The expectation-value of a search is: 

 
 

It's clear that this tree is not optimal. - It is easy to see that if the 21 is closer to the 

root, given its high probability, the tree will have a lower expected cost.  

 

CRITERION FOR AN OPTIMAL TREE 

  

Each optimal binary search tree is composed of a root and (at most) two optimal sub 

trees, the left and the right. The criterion for optimality gives a dynamic programming 

algorithm. For the root (and each node in turn) there are n possibilities to select one 

value .Once this choice is made, the set of keys which go into the left sub tree and 

right sub tree is completely defined, because the tree is lexicographically ordered. The 

left and right sub trees are now constructed recursively (optimally). This gives the 

recursive definition of the optimum cost: Let denote the probability of accessing key 

, let denote the sum of the probabilities from to  



 
The explanation of the formula is easy once we see that the first term corresponds to 

the left sub tree, which is one level lower than the root, the second term corresponds to 

the root and the 3  to the right sub tree. Every cost is multiplied by its probability. For 

simplicity we set and so simplifies to . This 

procedure is exponential if applied directly. However, the optimal trees are only 

constructed over contiguous sets of keys, and there are at most different sets of 

contiguous keys.  

In this case the optimal cost of a sub tree  in a matrix T .The Matrix-entry will 

contain the cost of an optimal sub tree constructed with the keys to  

The matrix is filled diagonal by diagonal. It is customary to fill the matrix with 

that a lot of multiplications and divisions can be saved. Let then  

 
An optimal tree with one node is just the node itself (no other choice), so the diagonal 

of is easy to fill: .  

 
The cost of the is in ( in our example)  And you can see, that it is 

practical, not to work with the probabilities, but with the frequencies (i.e the 

probabilities times the least common multiple of their denominators) to avoid fractions 

as matrix-entries.  

 

 

 

 

 

 

 

MATRIX CHAIN MULTIPLICATION 

 



PROBLEM: Multiplying a Sequence of Matrices . Suppose a long sequence of 

matrices .   has to be multiplied 

Multiplying an matrix by a matrix (using the common algorithm) takes 

multiplications.  

 
 

In matrix multiplication it is better to avoid big intermediate matrices, and since matrix 

multiplication is associative, we can parenthesise however we want.  

Matrix multiplication is not communitive, so the order of the matrices can not be 

permuted without changing the result.  

 

Example 

Consider , where A is , B is , C is , and D is .  

There are three possible parenthesizations:  

 

 

 

 
 

The order makes a big difference in real computation. Let M(i,j) be the minimum 

number of multiplications necessary to compute .  

The key observations are  

 The outermost parentheses partition the chain of matricies (i,j) at some k.  

 The optimal parenthesization order has optimal ordering on either side of k.    

A recurrence for this is:  

 
 

If there are n matrices, there are n+1 dimensions.  

 

A direct recursive implementation of this will be exponential, since there is a lot of 

duplicated work as in the Fibonacci recurrence.  

Divide-and-conquer is seems efficient because there is no overlap, but ...  



There are only substrings between 1 and n. Thus it requires only space to store 

the optimal cost for each of them.  

All the possibilities can be represented in a triangle matrix. We can also store the value 

of k in another triangle matrix to reconstruct to order of the optimal parenthesisation.  

The diagonal moves up to the right as the computation progresses. On each element of 

the kth diagonal |j-i| = k.  

 

 

Pseudocode MatrixOrder 

 

for i=1 to n do M[i, j]=0 

 

for diagonal=1 to n-1 

 

   for i=1 to n-diagonal do 

 

      j=i+diagonal 

 

         
 

      faster(i,j)=k 

 

return [m(1, n)] 

 

 

 

 

 

 

 

 

 

 

 

 

Pseudocode ShowOrder(i, j) 

 



if (i=j) write (  ) 

 

else 

 

        k=factor(i, j) 

 

        write ``('' 

 

       ShowOrder(i, k) 

 

      write ``*'' 

 

     ShowOrder (k+1, j) 

 

    write ``)'' 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

SECTION III 
 

 

DIVIDE AND CONQUER 

TECHNIQUE 
 

 

 

 

 
DIVIDE AND CONQUER TECHNIQUE 

Divide and conquer was a successful military strategy long before it became an 

algorithm design paradigm. Generals observed that it was easier to defeat one army of 

50,000 men, followed by another army of 50,000 men than it was to beat a single 



100,000 man army. Thus the wise general would attack so as to divide the enemy army 

into two forces and then mop up one after the other.    

To use divide and conquer as an algorithm design technique, we must divide the 

problem into two smaller subproblems, solve each of them recursively, and then meld 

the two partial solutions into one solution to the full problem. Whenever the merging 

takes less time than solving the two subproblems, we get an efficient algorithm.  

Divide and conquer is a design technique with many important algorithms to its credit, 

including mergesort, the fast Fourier transform, and Strassen's matrix multiplication 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

STRASSEN ALGORITHM 

In the mathematical discipline of linear algebra, the Strassen algorithm, named after 

Volker Strassen, is an algorithm used for matrix multiplication. It is asymptotically 



faster than the standard matrix multiplication algorithm, but slower than the fastest 

known algorithm. 

Algorithm 

Let A, B be two square matrices over a field F. We want to calculate the matrix 

product C as 

 
If the matrices A, B are not of type 2

n
 x 2

n
 we fill the missing rows and columns with 

zeros. 

We partition A, B and C into equally sized block matrices 

 

 
with 

 
then 

 

 

 

 
 

With this construction we have not reduced the number of multiplications. We still 

need 8 multiplications to calculate the Ci,j matrices, the same number of 

multiplications we need when using standard matrix multiplication. 

 

 

 

 

 

 

 

 

 

 

Now comes the important part. We define new matrices 

 

 



 

 

 

 

 
 

which are then used to express the Ci,j in terms of Mk. Because of our definition of the 

Mk we can eliminate one matrix multiplication and reduce the number of 

multiplications to 7 (one multiplications for each Mk) and express the Ci,j as 

 

 

 

 

 
 

We iterate this division process n-times until the submatrices degenerate into numbers. 

Practical implementations of Strassen's algorithm switch to standard methods of 

matrix multiplication for small enough submatrices, for which they are more efficient; 

the overhead of Strassen's algorithm implies that these "small enough" submatrices are 

actually quite large, well into thousands of elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANALYSIS OF STRASSEN ALGORITHM 

 

The standard matrix multiplications takes 



 

 
 

multiplications of the elements in the field F. We ignore the additions needed because, 

depending on F, they can be much faster than the multiplications in computer 

implementations, especially if the sizes of the matrix entries exceed the word size of 

the machine. 

With the Strassen algorithm we can reduce the number of multiplications to 

 

.  

 

The reduction in the number of multiplications however comes at the price at a 

somewhat reduced numeric stability. 

 
 

 

 

 

 

 

 

 

 

 

 



 

 

SECTION IV 
 

 

 

 

GREEDY TECHNIQUE 
 

 

 
GREEDY ALGORITHMS 

Greedy Algorithm works by making the decision that seems most promising at any 

moment; it never reconsiders this decision, whatever situation may arise later. They 

take decisions on the basis of information at hand without worrying about the effect 

these decisions may have in the future. They are easy to invent, easy to implement and 



most of the time quite efficient. Many problems cannot be solved correctly by greedy 

approach. Greedy algorithms are used to solve optimization problems. 

Characteristics and Features of Problems solved by Greedy Algorithms 

To construct the solution in an optimal way, Algorithm maintains two sets. One contains 

chosen items and the other contains rejected items. 

The greedy algorithm consists of four function. 

1. A function that checks whether chosen set of items provide a solution.  

2. A function that checks the feasibility of a set.  

3. The selection function tells which of the candidates is the most promising.  

4. An objective function, which does not appear explicitly, gives the value of a 

solution.  

  

Structure Greedy Algorithm 

 Initially the set of chosen items is empty i.e., solution set.  

 At each step  

o item will be added in a solution set by using selection function.  

o IF the set would no longer be feasible  

 reject items under consideration (and is never consider again).  

o ELSE IF set is still feasible THEN  

 add the current item.  

 

A feasible set (of candidates) is promising if it can be extended to produce not merely 

a solution, but an optimal solution to the problem. In particular, the empty set is 

always promising because an optimal solution always exists.  

Unlike Dynamic Programming, which solves the subproblems bottom-up, a greedy 

strategy usually progresses in a top-down fashion, making one greedy choice after 

another, reducing each problem to a smaller one.  

 

Greedy-Choice Property 



The "greedy-choice property" and "optimal substructure" are two ingredients in the 

problem that lend to a greedy strategy.It says that a globally optimal solution can be 

arrived at by making a locally optimal choice. 

 

 

 

 

 

 

 

 



KNAPSACK PROBLEM 

 

 

 

 
The knapsack problem is a problem in combinatorial optimization. It derives its 

name from the maximization problem of choosing possible essentials that can fit into 

one bag (of maximum weight) to be carried on a trip. A similar problem very often 

appears in business, combinatorics, complexity theory, cryptography and applied 

mathematics. Given a set of items, each with a cost and a value, then determine the 

number of each item to include in a collection so that the total cost is less than some 

given cost and the total value is as large as possible. 

Greedy approximation algorithm 

Martello and Toth (1990) proposed a greedy approximation algorithm to solve the 

knapsack problem. Their version sorts the essentials in decreasing order and then 

proceeds to insert them into the sack, starting from the first element (the greatest) until 

there is no longer space in the sack for more. If k is the maximum possible number of 

essentials that can fit into the sack, the greedy algorithm is guaranteed to insert at least 

k/2 of them. 

 

 

 

 

 



Dynamic Programming for 0-1 Knapsack Problem  

For this algorithm let c[i,w] = value of solution for items 1..i and maximum weight w.  

c[i,w] =  

DP-01K(v, w, n, W)  

1 for w = 0 to W  

2 c[0,w] = 0  

3 for i = 1 to n  

4 c[i,0] = 0  

5 for w = 1 to W  

6 if w[i] w  

7 then if v[i] + c[i-1,w-w[i]] > c[i-1,w]  

8 then c[i,w] = v[i] + c[i-1,w-w[i]]  

9 else c[i,w] = c[i-1,w]  

10 else c[i,w] = c[i-1,w]  

The run time performance of this algorithm is . 

 

 

 

 

 



AN ACTIVITY SELECTION PROBLEM 

An activity-selection is the problem of scheduling a resource among several competing 

activity. 

  

Problem Statement     

 

Given a set S of n activities with and start time, Si and fi, finish time of an i
th
 activity. 

Find the maximum size set of mutually compatible activities. 

  

Compatible Activities 

Activities i and j are compatible if the half-open internal [si, fi) and [sj, fj) 

do not overlap, that is, i and j are compatible if si ≥ fj  and sj ≥  fi  

  

Greedy Algorithm for Selection Problem 

I.     Sort the input activities by increasing finishing time. 

        f1 ≤  f2 ≤  . . . ≤  fn  

II.    Call GREEDY-ACTIVITY-SELECTOR (s, f) 

1. n = length [s]  

2. A={i}  

3. j = 1  

4. for  i = 2  to  n  

5.         do if   si ≥ fj  

6.              then  A= AU{i}  

7.                       j = i  
8. return  set A  

 

  

  

 



 

 

Operation of the algorithm 

 

Let 11 activities are given S = {p, q, r, s, t, u, v, w, x, y, z} start and finished times for 

proposed activities are (1, 4), (3, 5), (0, 6), 5, 7), (3, 8), 5, 9), (6, 10), (8, 11), (8, 12), 

(2, 13) and (12, 14). 

A = {p} Initialization at line 2 

A = {p, s} line 6 - 1
st
 iteration of FOR - loop 

A = {p, s, w} line 6 -2
nd

 iteration of FOR - loop 

A = {p, s, w, z} line 6 - 3
rd

 iteration of FOR-loop 

Out of the FOR-loop and Return A = {p, s, w, z} 

  

  

Analysis 

Part I requires O(n lg n) time (use merge of heap sort). 

Part II requires θ(n) time assuming that activities were already sorted in 

part I by their finish time. 

  

  

Correctness 
Note that Greedy algorithm do not always produce optimal solutions but GREEDY-

ACTIVITY-SELECTOR does. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Theorem    Algorithm GREED-ACTIVITY-SELECTOR produces solution of maximum 

size for the activity-selection problem. 

  

Proof 

I. Let S = {1, 2, . . . , n} be the set of activities. Since activities are in order by 

finish time. It implies that activity 1 has the earliest finish time.  

Suppose, A S is an optimal solution and let activities in A are ordered by finish 

time. Suppose, the first activity in A is k. 

If k = 1, then A begins with greedy choice and we are done (or to be very 

precise, there is nothing to proof here). 

If k 1, we want to show that there is another solution B that begins with greedy 

choice, activity 1. 

Let B =  A - {k} {1}. Because f1   fk, the activities in B are disjoint and since B 

has same number of activities as A, i.e., |A| = |B|, B is also optimal.  

II. Once the greedy choice is made, the problem reduces to finding an optimal 

solution for the problem. If A is an optimal solution to the original problem S, 

then A` = A - {1} is an optimal solution to the activity-selection problem S` = {i 

S: Si   fi}.  

why? Because if we could find a solution B` to S` with more activities then A`, 

adding 1 to B` would yield a solution B to S with more activities than A, there 

by contradicting the optimality. □  

  

  

  

 

 



 

 

 

SECTION V 
 

 

 

GRAPHS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

GRAPH ALGORITHMS 

 Graph Theory is an area of mathematics that deals with following types of problems  

 Connection problems  

 Scheduling problems  

 Transportation problems  

 Network analysis  

 Games and Puzzles.  

 

The Graph Theory has important applications in Critical path analysis, Social 

psychology, Matrix theory, Set theory, Topology, Group theory, Molecular chemistry, 

and Searching.  

 

 

 

 

 

 

 

 

 

 

 

 

DIJKSTRA'S ALGORITHM 

Dijkstra's algorithm solves the single-source shortest-path problem when all edges 

have non-negative weights. It is a greedy algorithm and similar to Prim's algorithm. 



Algorithm starts at the source vertex, s, it grows a tree, T, that ultimately spans all 

vertices reachable from S. Vertices are added to T in order of distance i.e., first S, then 

the vertex closest to S, then the next closest, and so on. Following implementation 

assumes that graph G is represented by adjacency lists. 

  

DIJKSTRA (G, w, s) 

1. INITIALIZE SINGLE-SOURCE (G, s)  

2. S ← { }     // S will ultimately contains vertices of final 

shortest-path weights from s  

3. Initialize priority queue Q i.e., Q  ←  V[G]  

4. while priority queue Q  is not empty do  

5.     u  ←  EXTRACT_MIN(Q)    // Pull out new   vertex  

6.     S  ←  S È {u}                        // Perform relaxation for each vertex   v 

adjacent to u  

7.     for each vertex v in Adj[u] do  

8.         Relax (u, v, w)  

  

ANALYSIS 

Like Prim's algorithm, Dijkstra's algorithm runs in O(|E|lg|V|) time. 

 

 

 

  

 

 

 

 

FLOYD  WARSHALL’S ALGORITHM 
 



Floyd warshall algorithm is used to solve the all pairs shortest path problem 

in a weighted, directed graph by multiplying an adjacency-matrix representation 

of the graph multiple times. The edges may have negative weights, but no 

negative weight cycles.  

  

 Steps to implement Floyd Warshall’s algorithm 

 

1. [Initialize matrix m] 

Repeat through step 2 fir I = 0 ,1 ,2 ,3 ,….., n – 1 

Repeat through step 2 fir j =0 ,1 ,2 ,3 ,….., n – 1 

2. [Test the condition and assign the required value to matrix m] 

If  a [ I ] [j] = 0 

 M  [ I ] [ j ] = infinity  

Else 

M [ I ] [ j ] = a [ I ] [ j ] 

 3. [ Shortest path evaluation ]  

        Repeat through step 4 for k = 0 , 1 , 2 , 3 , …. , n – 1 

       Repeat through step 4 for I = 0 , 1 , 2 , 3 , …. , n – 1 

       Repeat through step 4 for  j = 0 , 1 , 2 , 3 , …. , n – 1 

 4 .    If  m [ I ] [j] < m [ I ][k] + m[k][j] 

   M[i][ j] = m [ I ] [ j ] 

Else 

         M [I ] [ j ] = m [ I ] [ j ] +m [ k] [ j ] 

 5 .    Exit 

                                         

ANALYSIS 

The time complexity is Θ (V³). 

 

 

 

 

BELLMAN-FORD ALGORITHM 

 Bellman-Ford algorithm solves the single-source shortest-path problem in the general 

case in which edges of a given digraph can have negative weight as long as G contains 

no negative cycles.This algorithm, like Dijkstra's algorithm uses the notion of edge 

http://www.nist.gov/dads/HTML/theta.html


relaxation but does not use with greedy method. Again, it uses d[u] as an upper bound 

on the distance d[u, v] from u to v. 

The algorithm progressively decreases an estimate d[v] on the weight of the shortest 

path from the source vertex s to each vertex v in V until it achieve the actual shortest-

path. The algorithm returns Boolean TRUE if the given digraph contains no negative 

cycles that are reachable from source vertex s otherwise it returns Boolean FALSE. 

  

BELLMAN-FORD (G, w, s) 

1. INITIALIZE-SINGLE-SOURCE (G, s)  

2. for each vertex i = 1 to V[G] - 1 do  

3.     for each edge (u, v) in E[G] do  

4.         RELAX (u, v, w)  

5. For each edge (u, v) in E[G] do  

6.     if d[u] + w(u, v) < d[v] then  

7.         return FALSE  

8. return TRUE  

  

ANALYSIS 

 The initialization in line 1 takes (v) time  

 For loop of lines 2-4 takes O(E) time and For-loop of line 5-7 takes O(E) time.  

Thus, the Bellman-Ford algorithm runs in O(E) time. 

  

TRAVERSAL IN A GRAPH 

DEPTH-FIRST SEARCH (DFS) is an algorithm for traversing or searching a graph. 

Intuitively, one starts at the some node as the root and explores as far as possible along 

each branch before backtracking. 

Formally, DFS is an uninformed search that progresses by expanding the first child 

node of the graph that appears and thus going deeper and deeper until a goal node is 

found, or until it hits a node that has no children. Then the search backtracks, returning 



to the most recent node it hadn't finished exploring. In a non-recursive 

implementation, all freshly expanded nodes are added to a LIFO stack for expansion. 

 

 

Steps for implementing Depth first search  
 

1. Define an array B or Vert that store Boolean values, its size should be greater  

or equal to the number of vertices in the graph G. 

2. Initialize the array B to false  

3. For all vertices v in G 

if B[v] = false 

process (v) 

4. Exit 

 

DFS algorithm used to solve following problems:  

 Testing whether graph is connected. 

 Computing a spanning forest of graph. 

 Computing a path between two vertices of graph or equivalently reporting that no 

such path exists. 

 Computing a cycle in graph or equivalently reporting that no such cycle exists. 

    

ANALYSIS  

The running time of DSF is (V + E).  
   

   

BREADTH FIRST SEARCH (BFS) is an uninformed search method that aims to 

expand and examine all nodes of a graph systematically in search of a solution. In 

other words, it exhaustively searches the entire graph without considering the goal 

until it finds it. 

From the standpoint of the algorithm, all child nodes obtained by expanding a node are 

added to a FIFO queue. In typical implementations, nodes that have not yet been 



examined for their neighbors are placed in some container (such as a queue or linked 

list) called "open" and then once examined are placed in the container "closed". 

Steps for implementing Breadth first search 
 

1. Initialize all the vertices by setting Flag = 1 

2. Put the starting vertex A in Q and change its status to the waiting state by 

setting Flag = 0 

3. Repeat through step 5 while Q is not NULL 

4. Remove the front vertex v of Q . process  v and set the status of v to the 

processed status by setting Flag = -1 

5. Add to the rear of Q all  the neighbour of v that are in the ready state by 

setting Flag = 1 and change their status to the waiting state by setting flag = 

0 

6. Exit 
 

Breadth First Search algorithm used in  

 Prim's MST algorithm.  

 Dijkstra's single source shortest path algorithm.  
 Testing whether graph is connected. 
 Computing a cycle in graph or reporting that no such cycle exists. 

  

 

 

 

 

 

  

ANALYSIS 
Total running time of BFS is O(V + E). 
  

Like depth first search, BFS traverse a connected component of a given graph and defines 

a spanning tree. 

Space complexity of DFS is much lower than BFS (breadth-first search). It also lends 

itself much better to heuritic methods of choosing a likely-looking branch. Time 



complexity of both algorithms are proportional to the number of vertices plus the 

number of edges in the graphs they traverse. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

SECTION VI 



 

 

 

 

STRING MATCHING 

ALGORITHMS 

 

 

 

 

 
STRING  MATCHING 

The problem of string matching is a prevalent and important problem in computer 

science today. There are really two forms of string matching. The first, exact string 

matching, finds instances of some pattern in a target string. For example, if the 

pattern is "go" and the target is "agogo", then two instances of the pattern appear in the 

text (at the second and fourth characters, respectively). The second, inexact string 

matching or string alignment, attempts to find the "best" match of a pattern to some 

target. Usually, the match of a pattern to a target is either probabilistic or evaluated 

based on some fixed criteria (for example, the pattern "aggtgc" matches the target 

"agtgcggtg" pretty well in two places, located at the first character of the string and the 



sixth character). Both string matching algorithms are used extensively in 

bioinformatics to isolate structurally similar regions of DNA or a protein (usually in 

the context of a gene map or a protein database).  

Exact string matching: The problem is to search for a pattern string, pat[1..m], in a text 

string txt[1..n]. Usually n>>m, and txt might be very long indeed, although this is not 

necessarily so. This problem occurs in text-editors and many other computer 

applications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NAIVE STRING MATCHING 
The naive string searching algorithm is to examine each position, i>=1, in txt, trying 

for equality of pat[1..m] with txt[i..i+m-1]. If there is inequality, position i+1 is tried, 

and so on.  



Algorithm 

 

Analysis 

Remember that |P| = m, |T| = n.  

Inner loop will take m steps to confirm the pattern matches  

Outer loop will take n-m+1 steps  

Therefore, worst case is     

     

 

 

 

 

 

RABIN-KARP STRING SEARCH  

The Rabin-Karp algorithm is a string searching algorithm created by Michael O. Rabin 

and Richard M. Karp that seeks a pattern, i.e. a substring, within a text by using 

hashing. It is not widely used for single pattern matching, but is of considerable 

theoretical importance and is very effective for multiple pattern matching. For text of 

length n and pattern of length m, its average and best case running time is O(n), but the 

http://en.wikipedia.org/wiki/String_searching_algorithm
http://en.wikipedia.org/wiki/Michael_O._Rabin
http://en.wikipedia.org/wiki/Richard_M._Karp
http://en.wikipedia.org/wiki/Hashing
http://en.wikipedia.org/wiki/Big-O_notation


(highly unlikely) worst case performance is O(nm), which is one of the reasons why it 

is not widely used. However, it has the unique advantage of being able to find any one 

of k strings or less in O(n) time on average, regardless of the size of k. 

One of the simplest practical applications of Rabin-Karp is in detection of plagiarism. 

Say, for example, that a student is writing an English paper on Moby Dick. A cunning 

student might locate a variety of source material on Moby Dick and automatically 

extract a list of all sentences in those materials. Then, Rabin-Karp can rapidly search 

through a particular paper for any instance of any of the sentences from the source 

materials. To avoid easily thwarting the system with minor changes, it can be made to 

ignore details such as case and punctuation by removing these first. Because the 

number of strings we're searching for, k, is very large, single-string searching 

algorithms are impractical. 

Rather than pursuing more sophisticated skipping, the Rabin-Karp algorithm seeks to 

speed up the testing of equality of the pattern to the substrings in the text by using a 

hash function. A hash function is a function which converts every string into a numeric 

value, called its hash value; for example, we might have hash("hello")=5. Rabin-Karp 

exploits the fact that if two strings are equal, their hash values are also equal. Thus, it 

would seem all we have to do is compute the hash value of the substring we're 

searching for, and then look for a substring with the same hash value. 

 

However, there are two problems with this. First, because there are so many different 

strings, to keep the hash values small we have to assign some strings the same number. 

This means that if the hash values match, the strings might not match; we have to 

verify that they do, which can take a long time for long substrings. Luckily, a good 

hash function promises us that on most reasonable inputs, this won't happen too often, 

which keeps the average search time good. 

 

 

 

The algorithm is as shown: 

 

function RabinKarp(string s[1..n], string sub[1..m]) 

 2     hsub := hash(sub[1..m]) 

 3     hs := hash(s[1..m]) 

 4     for i from 1 to n 

 5         if hs = hsub 

 6             if s[i..i+m-1] = sub 
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 7                 return i 

 8         hs := hash(s[i+1..i+m]) 

9 return not found 

 

Lines 2, 3, 6 and 8 each require Ω(m) time. However, lines 2 and 3 are only executed 

once, and line 6 is only executed if the hash values match, which is unlikely to happen 

more than a few times. Line 5 is executed n times, but only requires constant time. So 

the only problem is line 8. 

If we naively recompute the hash value for the substring s[i+1..i+m], this would 

require Ω(m) time, and since this is done on each loop, the algorithm would require 

Ω(mn) time, the same as the most naive algorithms. The trick to solving this is to note 

that the variable hs already contains the hash value of s[i..i+m-1]. If we can use this to 

compute the next hash value in constant time, then our problem will be solved. 

 

We do this using what is called a rolling hash. A rolling hash is a hash function 

specially designed to enable this operation. One simple example is adding up the 

values of each character in the substring. Then, we can use this formula to compute the 

next hash value in constant time: 

 s[i+1..i+m] = s[i..i+m-1] - s[i] + s[i+m] 

 

This simple function works, but will result in statement 6 being executed more often 

than other more sophisticated rolling hash functions such as those discussed in the 

next section. 

Notice that if we're very unlucky, or have a very bad hash function such as a constant 

function, line 6 might very well be executed n times, on every iteration of the loop. 

Because it requires Ω(m) time, the whole algorithm then takes a worst-case Ω(mn) 

time. 

 

The key to Rabin-Karp performance is the efficient computation of hash values of the 

successive substrings of the text. One popular and effective rolling hash function treats 

every substring as a number in some base, the base being usually a large prime. For 

example, if the substring is "hi" and the base is 101, the hash value would be 104 × 

101
1
 + 105 × 101

0
 = 10609 (ASCII of 'h' is 104 and of 'i' is 105). 

 

Technically, this algorithm is only similar to the true number in a non-decimal system 

representation, since for example we could have the "base" less than one of the 

"digits". See hash function for a much more detailed discussion. The essential benefit 

http://en.wikipedia.org/wiki/Big-O_notation
http://en.wikipedia.org/wiki/Big-O_notation
http://en.wikipedia.org/wiki/Rolling_hash
http://en.wikipedia.org/wiki/Hash_value
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Hash_function


achieved by such representation is that it is possible to compute the hash value of the 

next substring from the previous one by doing only a constant number of operations, 

independent of the substrings' lengths. 

 

For example, if we have text "abracadabra" and we are searching for a pattern of 

length 3, we can compute the hash of "bra" from the hash for "abr" (the previous 

substring) by subtracting the number added for the first 'a' of "abr", i.e. 97 × 101
2
 (97 

is ASCII for 'a' and 101 is the base we are using), multiplying by the base and adding 

for the last a of "bra", i.e. 97 × 101
0
 = 97. If the substrings in question are long, this 

algorithm achieves great savings compared with many other hashing schemes. 

 

Theoretically, there exist other algorithms that could provide convenient 

recomputation, e.g. multiplying together ASCII values of all characters so that shifting 

substring would only entail dividing by the first character and multiplying by the last. 

The limitation, however, is the limited of the size of integer data type and the necessity 

of using modular arithmetic to scale down the hash results, for which see hash function 

article; meanwhile, those naive hash functions that would not produce large numbers 

quickly, like just adding ASCII values, are likely to cause many hash collisions and 

hence slow down the algorithm. Hence the described hash function is typically the 

preferred one in Rabin-Karp. 

 

Rabin-Karp is inferior for single pattern searching to Knuth-Morris-Pratt algorithm, 

Boyer-Moore string searching algorithm and other faster single pattern string 

searching algorithms because of its slow worst case behavior.  

 

 

 

 

 

 

However, Rabin-Karp is an algorithm of choice for multiple pattern search. 

That is, if we want to find any of a large number, say k, fixed length patterns in a text, 

we can create a simple variant of Rabin-Karp that uses a Bloom filter or a set data 

structure to check whether the hash of a given string belongs to a set of hash values of 

patterns we are looking for : 

 

 function RabinKarpSet(string s[1..n], set of string subs, m) { 

http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Modular_arithmetic
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Hash_collision
http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
http://en.wikipedia.org/wiki/Boyer-Moore_string_searching_algorithm
http://en.wikipedia.org/wiki/String_searching_algorithm
http://en.wikipedia.org/wiki/String_searching_algorithm
http://en.wikipedia.org/wiki/Bloom_filter
http://en.wikipedia.org/wiki/Set_data_structure
http://en.wikipedia.org/wiki/Set_data_structure


     set hsubs := emptySet 

     for each sub in subs 

         insert hash(sub[1..m]) into hsubs 

     hs := hash(s[1..m]) 

     for i from 1 to n 

         if hs ∈  hsubs 

             if s[i..i+m-1] = a substring with hash hs 

                 return i 

         hs := hash(s[i+1..i+m]) 

     return not found 

 } 

 

Here we assume all the substrings have a fixed length m, but this assumption can be 

eliminated. We simply compare the current hash value against the hash values of all 

the substrings simultaneously using a quick lookup in our set data structure, and then 

verify any match we find against all substrings with that hash value. 

 

Other algorithms can search for a single pattern in O(n) time, and hence they can be 

used to search for k patterns in O(n k) time. In contrast, the variant Rabin-Karp above 

can find all k patterns in O(n+k) time in expectation, because a hash table checks 

whether a substring hash equals any of the pattern hashes in O(1) time. 

 

Time Complexity 

Rabin's algorithm is (almost always) fast, i.e. O(m+n) average-case time-complexity, 

because hash(txt[i..i+m-1]) can be computed in O(1) time - i.e. by two multiplications, 

a subtraction, an addition and a `mod' - given its predecessor hash(txt[i-1..i-1+m-1]).  

The worst-case time-complexity does however remain at O(m*n) because of the 

possibility of false-positive matches on the basis of the hash numbers, although these 

are very rare indeed.  

 
 

 

 



 

 

 

 

 

 

 

 

 

SECTION VII 
 



 

 

 

SPANNING TREES 

 

 

 

 

 
MINIMUM SPANNING TREE 

Given a connected, undirected graph, a spanning tree of that graph is a subgraph which 

is a tree and connects all the vertices together. A single graph can have many different 

spanning trees. A weight can be assignned to each edge, which is a number 

representing how unfavorable it is, and use this to assign a weight to a spanning tree 

by computing the sum of the weights of the edges in that spanning tree. A minimum 

spanning tree or minimum weight spanning tree is then a spanning tree with weight 

less than or equal to the weight of every other spanning tree. More generally, any 

undirected graph has a minimum spanning forest. 

One example would be a cable TV company laying cable to a new neighborhood. If it 

is constrained to bury the cable only along certain paths, then there would be a graph 

representing which points are connected by those paths. Some of those paths might be 

more expensive, because they are longer, or require the cable to be buried deeper; 
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these paths would be represented by edges with larger weights. A spanning tree for 

that graph would be a subset of those paths that has no cycles but still connects to 

every house. There might be several spanning trees possible. A minimum spanning 

tree would be one with the lowest total cost. 

In case of a tie, there could be several minimum spanning trees; in particular, if all 

weights are the same, every spanning tree is minimum. However, one theorem states 

that if each edge has a distinct weight, the minimum spanning tree is unique. This is 

true in many realistic situations, such as the one above, where it's unlikely any two 

paths have exactly the same cost. This generalizes to spanning forests as well. 

If the weights are non-negative, then a minimum spanning tree is in fact the minimum-

cost subgraph connecting all vertices, since subgraphs containing cycles necessarily 

have more total weight. 

 

 

 

 

 

PRIM'S ALGORITHM 

Prim's algorithm is an algorithm in graph theory that finds a minimum spanning tree 

for a connected weighted graph. This means it finds a subset of the edges that forms a 

tree that includes every vertex, where the total weight of all the edges in the tree is 

minimized. If the graph is not connected, then it will only find a minimum spanning 

tree for one of the connected components. The algorithm was discovered in 1930 by 

mathematician Vojtěch Jarník and later independently by computer scientist Robert C. 

Prim in 1957 and rediscovered by Dijkstra in 1959. Therefore it is sometimes called 

the DJP algorithm or Jarnik algorithm. 

It works as follows: 
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 create a tree containing a single vertex, chosen arbitrarily from the graph  

 create a set (the 'not yet seen' vertices) containing all other vertices in the graph  

 create a set (the 'fringe' vertices) that is initially empty  

 loop (number of vertices - 1) times  

o move any vertices that are in the not yet seen set and that are directly 

connected to the last node added into the fringe set  

o for each vertex in the fringe set, determine if an edge connects it to the 

last node added and if so, if that edge has smaller weight than the 

previous edge that connected that vertex to the current tree, record this 

new edge through the last node added as the best route into the current 

tree.  

o select the edge with minimum weight that connects a vertex in the fringe 

set to a vertex in the current tree  

o add that edge to the tree and move the fringe vertex at the end of the edge 

from the fringe set to the current tree vertices  

o update the last node added to be the fringe vertex just added  

Only |V|-1, where |V| is the number of vertices in the graph, iterations are required. A 

tree connecting |V| vertices only requires |V|-1 edges (anymore causes a cycle into the 

subgraph, making it no longer a tree) and each iteration of the algorithm as described 

above pulls in exactly one edge. 

A simple implementation using an adjacency matrix graph representation and 

searching an array of weights to find the minimum weight edge to add requires 

O(V^2) running time. Using a simple binary heap data structure and an adjacency list 

representation, Prim's algorithm can be shown to run in time which is O(Elog V) 

where E is the number of edges and V is the number of vertices. Using a more 

sophisticated Fibonacci heap, this can be brought down to O(E + Vlog V), which is 

significantly faster when the graph is dense enough that E is Ω(Vlog V). 

 

Minimum-Spanning-Tree-by-Prim(G, weight-function, source) 

 1  for each vertex u in graph G 

 2    set key of u to ∞ 

 3    set parent of u to nil 

 4  set key of source vertex to zero 

 5  enqueue to minimum-heap Q all vertices in graph G.  
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 6  while Q is not empty 

 7    extract vertex u from Q // u is the vertex with the lowest key that is in Q 

 8    for each adjacent vertex v of u do 

 9      if (v is still in Q) and (weight-function(u, v) < key of v) then 

10        set u to be parent of v  // in minimum-spanning-tree 

11  update v's key to equal weight-function(u, v) 

 

 

 

 

 

 

 

 

 

 

KRUSKAL'S ALGORITHM 

Kruskal's algorithm is an algorithm in graph theory that finds a minimum spanning 

tree for a connected weighted graph. This means it finds a subset of the edges that 

forms a tree that includes every vertex, where the total weight of all the edges in 

the tree is minimized. If the graph is not connected, then it finds a minimum 

spanning forest (a minimum spanning tree for each connected component). 

Kruskal's algorithm is an example of a greedy algorithm. 

It works as follows: 

 create a forest F (a set of trees), where each vertex in the graph is a separate tree  

 create a set S containing all the edges in the graph  

 while S is nonempty  

o remove an edge with minimum weight from S  
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o if that edge connects two different trees, then add it to the forest, 

combining two trees into a single tree  

o otherwise discard that edge  

At the termination of the algorithm, the forest has only one component and forms a 

minimum spanning tree of the graph. 

 

function Kruskal(G) 

 2    for each vertex v in G do 

 3      Define an elementary cluster C(v) ← {v}. 

 4    Initialize a priority queue Q to contain all edges in G, using the weights as keys. 

 5    Define a tree T ← Ø                              //T will ultimately contain the edges of the 

MST 

 6    while T has fewer than n-1 edges do 

 7      (u,v) ← Q.removeMin() 

 8      Let C(v) be the cluster containing v, and let C(u) be the cluster containing u. 

 9      if C(v) ≠ C(u) then 

10        Add edge (v,u) to T. 

11        Merge C(v) and C(u) into one cluster, that is, union C(v) and C(u). 

12    return tree T 

 

VIVA QUESTIONS 
COURSE TITLE:ALGORITHM ANALYSIS AND DESIGN 

COURSE CODE:ETCS-254 
 

1. Define Omega notation. 

2.Define Big-O notation. 

3.Define Theta notation. 

4.What is an algorithm? 

5.What is a randomized algorithm? 

6.What are loop invariants? How it is shown that an algorithm is correct? 

7.What is a Pseudocode? 

8.What are the worst case and average case running time of insertion sort? 

9.Which technique is used to sort elements in merge sort? 

10.What is the running time of merge sort? 

11.How merge sort is different from quick sort? 

12.Name different methods to solve recurrences. 

http://en.wikipedia.org/wiki/Algorithm


13.What is the worst case running time of quick sort? 

14.Define i-th order statistics of a set. 

15.What is median of a set? 

16.What are the differences between dynamic and greedy algorithms?  

17.What is a negative weight cycle? 

18.Dijkstra algorithm can take into account the negative edge weigthts.'Is the 

statement true? 

19.Define minimum spanning tree.' 

20.Name any algorithm for finding the minimum spanning tree. 

21.Compare Prim's and Kruskal's algorithm. 

22.What are Huffman codes? 

23.What are fixed length  and variable length codes? 

24.How graphs are represented in computer memory? 

25.Compare an adjacency list and adjacency matrix? 

26.What is the time complexity of BFS? 

27.What is the time complexity of DFS? 

28. Define White Paththeorem. 

29.What is Parenthesis theorem? 

30.How Euler tour is different from Hamiltonian cycle? 

31.Compare Bellman Ford and Dijkstra's algorithm. 

32.Define Clique problem. 

33.Define Vertex Cover Problem. 

34.What are NP-complete problems. 

35.Name some NPC problems. 

36.Define Circuit satisfiability problem. 

37.Define Travelling salesman problem.    
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1. To implement Huffman code algorithm. 

2. To Implement Knuth- Morris Pratt algorithm. 

3. To implement magic square.  

4. To implement task scheduling.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



HUFFMAN CODES 

Huffman code is a technique for compressing  data. Huffman's greedy algorithm look 

at the occurrence of each character and it as a binary string in an optimal way. 

CONSTRUCTING A HUFFMAN CODE 

A greedy algorithm that constructs an optimal prefix code called a Huffman code. The 

algorithm builds the tree T corresponding to the optimal code in a bottom-up manner. 

It begins with a set of |c| leaves and perform |c|-1 "merging" operations to create the 

final tree. 

Data Structure used: Priority queue = Q 

Huffman (c) 

n = |c| 

Q = c 

for  i =1  to   n-1 

    do   z = Allocate-Node () 

             x = left[z] = EXTRACT_MIN(Q) 

             y = right[z] = EXTRACT_MIN(Q) 

            f[z] = f[x] + f[y] 

            INSERT (Q, z) 

return EXTRACT_MIN(Q) 

  

  

ANALYSIS  

 Q implemented as a binary heap.  

 line 2 can be performed by using BUILD-HEAP (P. 145; CLR) in O(n) time.  

 FOR loop executed |n| - 1 times and since each heap operation requires O(lg n) 

time.  

=> the FOR loop contributes (|n| - 1) O(lg n)  

=> O(n lg n)  

 Thus the total running time of Huffman on the set of n characters is O(nlg n).   



KNUTH-MORRIS-PRATT ALGORITHM 

Knuth, Morris and Pratt discovered first linear time string-matching algorithm by 

following a tight analysis of the naïve algorithm. Knuth-Morris-Pratt algorithm keeps 

the information that naïve approach wasted gathered during the scan of the text. By 

avoiding this waste of information, it achieves a running time of O(n + m), which is 

optimal in the worst case sense. That is, in the worst case Knuth-Morris-Pratt 

algorithm we have to examine all the characters in the text and pattern at least once. 

KNUTH-MORRIS-PRATT (T, P) 

Input:    Strings T[0 . . n] and P[0 . . m] 

Output: Starting index of substring of T matching P 

f ← compute failure function of Pattern P 

i ← 0 

j ← 0 

while i < length[T] do 

    if j ← m-1 then 

        return i- m+1    // we have a match 

i ← i +1 

j ← j +1 

else if j > 0 

        j ← f(j -1) 

    else  

        i ← i +1 

 ANALYSIS 

The running time of Knuth-Morris-Pratt algorithm is proportional to the time needed 

to read the characters in text and pattern. In other words, the worst-case running time 

of the algorithm is O(m + n) and it requires O(m) extra space. It is important to note 

that these quantities are independent of the size of the underlying alphabet. 

 

 

 

MAGIC SQUARE 



A magic square is a square array of numbers consisting of the distinct positive integers 

1, 2, ..., arranged such that the sum of the numbers in any horizontal, vertical, or 

main diagonal line is always the same number known as the magic constant  

 

If every number in a magic square is subtracted from , another magic square is 

obtained called the complementary magic square. A square consisting of consecutive 

numbers starting with 1 is sometimes known as a "normal" magic square.  

 

 

 

 

 

/*code is for generating odd magic square. Change the value of MAX in the program 

to generate the magic square. Magic square - Sum of values or rows, columns or 

diagonals is the same.*/ 

#include<stdio.h> 

#include<conio.h> 

http://mathworld.wolfram.com/PositiveInteger.html
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#define MAX 2 

void main() 

{ 

int arr[MAX+1][MAX+1],val=1,i,j,k; 

clrscr(); 

for(i=0;i<=MAX;i++) 

for(j=0;j<=MAX;j++) 

arr[i][j]=0; 

for(i=0,j=MAX/2,k=0;k<((MAX+1)*(MAX+1));k++) 

{ 

arr[i--][j--]=val++; 

if(i<0) 

i=MAX; 

if(j<0) 

j=MAX; 

if(arr[i][j]!=0) 

{ 

i=i+2; 

j=j+1; 

if(i>MAX) 

i%=(MAX+1); 

if(j>MAX) 

j%=(MAX+1); 

} 

} 

for(i=0;i<=MAX;i++) 

{ 

for(j=0;j<=MAX;j++) 

printf("%d\t",arr[i][j]); 

printf("\n"); 

} 

getch();} 
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